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Delivering High Performane to Parallel Appliations Using Advaned ShedulingNikolaos Drosinos a, Georgios Goumas a, Maria Athanasaki a and Netarios Koziris aa National Tehnial University of AthensShool of Eletrial and Computer EngineeringComputing Systems LaboratoryZografou Campus, Zografou 15773, Athens, Greeee-mail: fndros, goumas, maria, nkozirisg�slab.ee.ntua.grThis paper presents a omplete framework for the parallelization of nested loops by applying tilingtransformation and automatially generating MPI ode that allows for an advaned sheduling sheme.In partiular, under advaned sheduling sheme we onsider two separate tehniques: �rst, the ap-pliation of a suitable tiling transformation, and seond the overlapping of omputation and om-muniation when exeuting the parallel program. As far as the hoie of a sheduling-eÆient tilingtransformation is onerned, the data dependenies of the initial algorithm are taken into aountand an appropriate transformation matrix is automatially generated aording to a well-establishedtheory. On the other hand, overlapping omputation with ommuniation partly hides the ommuni-ation overhead and allows for a more eÆient proessor utilization. We address all issues onerningautomati parallelization of the initial algorithm. More spei�ally, we have developed a tool thatautomatially generates MPI ode and supports arbitrary tiling transformations, as well as both om-muniation shemes, e.g. the onventional reeive-ompute-send sheme and the overlapping one. Weinvestigate the performane bene�ts in the total exeution time of the parallel program attained by theuse of the advaned sheduling sheme, and experimentally verify with the help of appliation-kernelbenhmarks that the obtained speedup an be signi�antly improved when overlapping omputationwith ommuniation and at the same time applying an appropriate (generally non-retangular) tilingtransformation, as opposed to the ombination of the standard reeive-ompute-send sheme with theusual retangular tiling transformation.1. Introdution-BakgroundTiling or supernode transformation is one of the most ommon loop transformations disussed inbibliography, proposed to enhane loality in uniproessors and ahieve oarse-grain parallelism inmultiproessors. Tiling groups a number of iterations into a unit (tile), whih is exeuted uninter-ruptedly. Traditionally, only retangular tiling has been used for generating SPMD parallel ode fordistributed memory environments, like lusters. In [1℄, Tang and Xue provided a detailed method-ology for generating eÆient tiled ode for perfetly nested loops, but only used retangular tilesdue to the simpliity of the parallel ode, sine only division and modulo operations are requiredin this ase. However, reent sienti� researh has indiated that the performane of the paralleltiled ode an be greatly a�eted by the tile size ([2℄, [3℄, [4℄), as well as by the tile shape ([5℄, [6℄,[7℄). The e�et of the tile shape on the sheduling of the parallel program is depited in Figure 1.It is obvious that non-retangular tiling is more bene�ial in this partiular ase than retangularone, sine it leads to fewer exeution steps for the ompletion of the parallel algorithm. The mainproblem with arbitrary tile shapes appears to be the omplexity of the respetive parallel ode andthe performane overhead inurred by the enumeration of the internal points of a non-retangulartile. Therefore, an eÆient implementation of an arbitrary tiling method and its inorporation in atool for automati ode generation would be desirable in order to ahieve the optimal performane ofparallel appliations.Elaborating further more on sheduling, under onventional shemes, the required ommuniationbetween di�erent proessors ours just before the initiation and after the ompletion of the om-
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Figure 1. E�et of tile shape on overall ompletion time
putations within a tile. That is, eah proessor �rst reeives data, then omputes all alulationsinvolved with the urrent tile, and �nally sends data produed by the previous alulations. By pro-viding support for an advaned sheduling sheme that uses non-bloking ommuniation primitives,and onsequently allows the overlapping of useful omputation with burdensome ommuniation, it isexpeted that the performane of the parallel appliation will be further improved. This hypothesisis also established by reent sienti� work ([8℄, [9℄). More spei�ally, the bloking ommuniationprimitives are substituted with non-bloking ommuniation funtions, whih only initialize the om-muniation proess, and an be tested for ompletion at a later part of the program. By doing so, afterinitializing non-bloking ommuniation the proessor an go on with useful omputation diretly re-lated to the user appliation. The ommuniation ompletion an be tested as late as possible, whenit will most likely have ompleted, and thus the proessor will not have to stall idle, prolonging thetotal exeution time of the appliation.2. Algorithmi ModelOur model onerns n-dimensional perfetly nested loops with uniform data dependenies of thefollowing form:FOR j1 = min1 TO max1 DO... FOR jn = minn TO maxn DOComputation(j1, ..., jn);ENDFOR...ENDFORThe loop omputation is a alulation generally involving an n-dimensional matrix A, whih isindexed by j1, . . . , jn. We assume that the loop omputation imposes lexiographially positive datadependenies, so that the parallelization of the algorithm with the appliation of an appropriate tilingtransformation is always possible. Also, if the data dependenies are lexiographially positive, anappropriate skewing transformation an eliminate all negative elements of the dependene matrix, sothat retangular tiling an be applied, as well.Furthermore, for the i-th loop bounds mini, maxi it holds that mini = f(j1; : : : ; ji�1) andmaxi = g(j1; : : : ; ji�1). That is, our model also deals with non-retangular iteration spaes, un-der the assumption that they are de�ned as a �nite number of semi-spaes of the n-dimensional spaeZn.



33. Automati Code GenerationThe automati parallelization proess of the sequential program in shematially depited in Fig-ure 2. The proedure an be divided in three phases, namely the dependene analysis of the algorithm,the appliation of an appropriate tiling transformation for the generation of intermediate sequentialtiled ode, and �nally the parallelization of the tiled ode in terms of omputation/data distribution,as well as the implementation of ommuniation primitives.
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Tiled CodeFigure 2. Automati Parallelization of Sequential CodeThe following Subsetions elaborate on the automati parallelization proess, emphasizing on theode generation issues.3.1. Tiled Code GenerationThe generation of the sequential tiled ode from the initial algorithm mainly implies transformingthe n nested loops into 2n new ones, where the n outermost loops san the tile spae and the ninnermost ones traverse all iterations assoiated with a spei� tile. This equivalent form of thealgorithm ode is more onvenient for the parallelization proess, as the omputation distribution anbe diretly applied to the outermost n loops enumerating the tiles.In ase of retangular tiling and retangular iteration spaes, the respetive sequential tiled odeis simple and straightforward, as it is implemented with the aid of integer division and modulooperators ([7℄). In the opposite ase, if non-retangular tiling is applied, or a non-retangular iterationspae is onsidered, the transformation of the initial algorithm into sequential tiled ode is a moreintriate task, that requires signi�ant ompiler work. In [10℄ we have proposed an eÆient ompilertehnique based on the Fourier-Motzkin elimination method for alulating the outer loops bounds.The eÆieny of the proposed methodology lies in that we managed to onstrut a ompat system ofinequalities that allows the generation of tiled ode, and thus ompensates for the doubly exponentialomplexity of the Fourier-Motzkin method. The simpli�ed system of inequalities enumerates someredundant tiles, as well, but the run-time overhead proves to be negligible in pratie, sine theinternal points of these tiles are never aessed.As far as the traversing the internal of a tile is onerned, in [10℄ we further propose a method totransform arbitrary shaped tiles into retangular ones. By doing so, only retangular tiles need tobe traversed and the expressions required in the n innermost loop bounds evaluation are signi�antlyredued. Formally, the iteration spae of a tile (Tile Iteration Spae - TIS) is transformed into anew iteration spae, the Transformed TIS (TTIS) by using a non-unimodular transformation. Theorrespondene between the TIS and the TTIS is shematially depited in Figure 3. It should beintuitively obvious that the TTIS an be more easily traversed in omparison to the TIS, althoughspeial are needs to be taken so that only valid points (e.g. blak dots in Figure 3) are aessed.3.2. ParallelizationThe sequential tiled ode is parallelized aording to the SPMD model in order to provide portableMPI C++ ode. The parallelization proess addresses issues suh as omputation distribution, datadistribution and inter-proess ommuniation primitives. We will mainly fous on the ommuniationsheme, as the omputation and data distribution are more extensively analyzed in [10℄.Eah MPI proess assumes the exeution of a sequene of tiles along the longest dimension ofthe tile iteration spae, as previous work in the �eld of UET-UCT graphs ([9℄) suggests that this
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Figure 3. Transformation of arbitrary shaped tile into retangularsheduling is optimal. The n outermost loops of the sequential tiled ode are reordered, so that the oneorresponding to the maximum-length dimension beomes the innermost of the n. Eah worker proessis identi�ed by an n�1 dimensional pid vetor diretly derived from its MPI rank, so that it undertakesthe exeution of all tiles whose n�1 outermost oordinates math pid. Also, data distribution followsthe omputer-owns rule, e.g. eah worker proess owns the data it omputes. By adopting the aboveomputation and data distribution, the required SPMD model for the parallelization of the sequentialtiled ode is relatively simple and eÆient, as far as the overall performane is onerned.Finally, in order for the worker proesses to be able to exhange data, ertain ommuniationprimitives need to be supplied to the parallel ode. We have implemented two ommuniation patterns,namely one based on bloking MPI primitives (MPI Send, MPI Rev), and an alternative one basedon non-bloking MPI primitives (MPI Isend, MPI Irev). In the �rst ase (bloking), eah workerproess initially reeives all non-loal data required for the omputation of a tile, then omputes thattile, and �nally sends all omputed data required by other proesses (Table 1). Note that in thisase ommuniation and omputation phases are distint and do not overlap. In the seond ase(non-bloking), eah worker proess onurrently omputes a tile, reeives data required for the nexttile and sends data omputed at the previous tile (Table 2). This ommuniation sheme allows forthe overlapping of omputation and ommuniation phases.for(tile t)fMPI Rev(t);Compute(t);MPI Send(t);gTable 1Bloking ommuniation sheme
for(tile t)fMPI Irev(t+1);MPI Isend(t-1);Compute(t);MPI Waitall;gTable 2Non-bloking ommuniation shemeIt is obvious that the non-bloking ommuniation sheme allows for overlapping of omputationwith ommuniation only as long as both the MPI implementation and the underlying hardware in-frastruture support it, as well. That is, the MPI implementation should make a distintion betweenstandard and non-bloking ommuniation primitives, so as to exploit the bene�ts of the advanedommuniation pattern. On the other hand, the underlying hardware/network infrastruture mustalso support DMA-driven non-bloking ommuniation. Unfortunately, this is not the ase withthe used MPICH implementation for h p4 ADI-2 devie, as indiated by the relative performaneof both shemes. In order to evaluate our proposed advaned sheduling sheme also in terms of



5ommuniation-omputation overlapping, we thus resorted to synhronous MPI ommuniation prim-itives for the bloking sheme (e.g MPI Ssend instead of MPI Send). By doing so we were able to simu-late the relative performane of both ommuniation patterns, despite the implementation/hardwarerestritions.4. Experimental ResultsIn order to evaluate the performane bene�ts obtained by the proposed advaned sheduling sheme,we have onduted a series of experiments using miro-kernel benhmarks. More spei�ally, wehave automatially parallelized the Gauss Suessive Over-relaxation (SOR - [11℄) and the TextureSmoothing Code (TSC - [12℄) miro-kernel benhmarks, and we have experimentally veri�ed theoverall exeution time for di�erent tiling transformations, bloking and non-bloking ommuniationshemes and various iteration spaes. Our platform is an 8-node dual-SMP luster interonnetedwith FastEthernet. Eah node has 2 Pentium III CPUs at 800 MHz, 128 MB of RAM and 256 KB ofahe, and runs Linux with 2.4.20 kernel. We used g++ ompiler version 2.95.4 with -O3 optimizationlevel. Finally, we used MPI implementation MPICH v. 1.2.5, on�gured with the following options:--with-devie=h p4 --with-omm=shared.4.1. SORThe SOR loop nest involves a omputation of the form A[t; i; j℄ = f(A[t; i� 1; j℄; A[t; i; j� 1℄; A[t�1; i+1; j℄; A[t�1; i; j+1℄; A[t�1; i; j℄), while the iteration spae isM�N�N . The dependene matrixof the algorithm is D = 24 0 0 1 1 11 0 �1 0 00 1 0 �1 0 35. Beause of the negative elements of D, skewingneeds to be applied to the original algorithm for the retangular tiling to be valid. An appropriateskewing matrix is T = 24 1 0 01 1 02 0 1 35, sine TD � 0, that is the skewed algorithm ontains onlynon-negative dependenies. We will apply both retangular and non-retangular tiling to the skewediteration spae, and evaluate both the bloking and the non-bloking ommuniation sheme. Morespei�ally, the retangular tile is provided by the matrix Pr = 24 x 0 00 y 00 0 z 35, while the proposednon-retangular tiling transformation, as obtained from the algorithm's tiling one, is desribed by thematrix Pnr = 24 x 0 00 y 0x 0 z 35. Note that in eah ase, the tile shape an be determined from the olumnvetors of the respetive transformation matrix (Pr or Pnr), while the tile size depends on the valuesof the integers x, y and z. However, both tiles have equal sizes, sine jPrj = jPnrj = xyz, so that theper-tile omputation volume is equal in both ases. Moreover, sine in both ases tiles will be mappedto proessors aording to the third dimension, the per-tile ommuniation volume and the numberof MPI proesses required are the same, as proess mapping and inter-proess ommuniation areimpliitly determined by the outermost two dimensions. Consequently, any di�erenes in the overallexeution times should be attributed to the di�erent sheduling that results from the two tilingtransformations, as well as to the ommuniation pattern (bloking or non-bloking).Experimental results for the SOR miro-kernel are depited in Figure 4. In all ases, non-retangulartiling outperforms the retangular tiling, while the non-bloking ommuniation pattern is more eÆ-ient than the bloking one, at least on a simulation level. In other words, the experimental resultsomply to the theoretially antiipated performane.4.2. TSCTSC algorithm an be written as a triply nested loop with a omputation of the form b[t; i; j℄ =f(b[t; i � 1; j � 1℄; b[t; i � 1; j℄; b[t; i � 1; j + 1℄; b[t; i; j � 1℄; b[t � 1; i; j + 1℄; b[t � 1; i + 1; j � 1℄; b[t �1; i+1; j℄; b[t� 1; i+1; j +1℄) (iteration spae T �N �N). The dependene matrix of the algorithm



6

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40

T
i
m
e
 
(
i
n
 
s
e
c
)

Tile Size (in K)

Overall Execution Time for SOR (256x128x128 Iteration Space)

Rectangular tiling (blocking)
Rectangular tiling (non-blocking)
Non-rectangular tiling (blocking)

Non-rectangular tiling (non-blocking)

30

35

40

45

50

55

60

65

20 40 60 80 100 120 140 160

T
i
m
e
 
(
i
n
 
s
e
c
)

Tile Size (in K)

Overall Execution Time for SOR (128x256x256 Iteration Space)

Rectangular tiling (blocking)
Rectangular tiling (non-blocking)
Non-rectangular tiling (blocking)

Non-rectangular tiling (non-blocking)

Figure 4. Experimental Results for SORis D = 24 0 0 0 0 1 1 1 11 1 1 0 0 �1 �1 �11 0 �1 1 �1 1 0 �1 35. Sine D also ontains negative elements, properskewing needs to be applied for the retangular tiling transformation to be valid. We onsider theskewing matrix T = 24 1 0 01 1 02 1 1 35. We will apply tiling transformation Pnr = 24 x 0 0�x y 0�x �y z 35 tothe original iteration spae, and retangular tiling ( Pr = 24 x 0 00 y 00 0 z 35) to the skewed iteration spae.As in the SOR miro-kernel benhmark, in both ases (retangular and non-retangular tilingtransformation) we have an equal tile size (jPr j = jPnr j = xyz), that results to the same per-tile om-putation volume. Furthermore, tiles are mapped to MPI proesses aording to the third dimension.Experimental results are depited in Figure 5. We observe that, as in SOR, the non-blokingommuniation sheme with the appliation of non-retangular tiling delivers the best overall per-formane. In this ase however, both tiling transformations deliver similar performane under thebloking ommuniation sheme, while non-retangular tiling transformation is more bene�ial inase of the non-bloking ommuniation sheme.5. ConlusionsSummarizing, we have ombined the notions of arbitrary tiling transformation and overlapping om-muniation and omputation and inorporated these aspets into a omplete framework to automati-ally generate parallel MPI ode. We have addressed all issues regarding parallelization, suh as taskalloation, sweeping arbitrary shaped tiles and implementation of appropriate ommuniation prim-itives. We have experimentally evaluated our work, and supplied simulation results for appliation-kernel benhmarks that verify the high performane gain obtained by the advaned sheduling sheme.REFERENCES[1℄ P. Tang, J. Xue, Generating EÆient Tiled Code for Distributed Memory Mahines, ParallelComputing 26 (11) (2000) 1369{1410.[2℄ R. Andonov, P. Calland, S. Niar, S. Rajopadhye, N. Yanev, First Steps Towards Optimal ObliqueTile Sizing, in: 8th International Workshop on Compilers for Parallel Computers, Aussois, 2000,pp. 351{366.
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