
r

= Partially supported by th
Optimal Scheduling for UET-UCT
Generalized n-Dimensional Grid Task Graphs=

Theodore Andronikos, Nectarios Koziris,
George Papakonstantinou and Panayiotis Tsanakas

National Technical University of Athens
Dept. of Electrical and Computer Engineering

Computer Science Division
Zografou Campus, Zografou 15773, Greece

e-mail: {tedandr, nkoziris, papakon}@dsclab.ece.ntua.g
l
d

,
E
u
i

th

s
th

f
ti
e

d
o
n

er
to
h
in
e
is

],
d
e
to
f
al
l

o

e
t
f
in

f
d,
r
]
r

l

,
 [4]
ty
Abstract
The n-dimensional grid is one of the mo

representative patterns of data flow in para
computation. The most frequently used scheduling mo
for grids is the unit execution - unit communication tim
(UET-UCT). In this paper we enhance the model of
dimensional grid by adding extra diagonal edges. First
calculate the optimal makespan for the generalized U
UCT grid topology and, then, we establish the minim
number of processors required, to achieve the opt
makespan. Furthermore, we solve the scheduling prob
for generalized n-dimensional grids by proposing
optimal time and space scheduling strategy. We
prove that UET-UCT scheduling of generalized
dimensional grids is low complexity tractable.

1. Introduction

Task scheduling is one of the most important a
difficult problems in parallel systems. Since the gene
scheduling problem is known to be NP-complete (
Ullman [13]), researchers have given attention to o
methods such as heuristics, approximation algorithms
In their paper Papadimitriou and Yannakakis [10] prov
the intractability of the general scheduling problem o
task graph with arbitrary communication and computa
times and proposed a clever heuristic with guarant
worst performance twice the optimum makespan.
addition to this, Gerasoulis and Yang have propose
[9], [14] the Dominant Sequence Clustering, a l
complexity heuristic for general task graph scheduli

e Greek Secretariat of Research and Tech
st
lel
els
e
n-

 we
T-
m

mal
lem
an
us

n-

nd
ral
ee
er

etc.
ed
 a
on
ed
In
 in
w
g,

which is based on the critical path of tasks. On the oth
hand, by restricting the general scheduling problem
instances with simple properties, we may come up wit
tractable solutions. For example, Jung, Kirousis et al.
[7] have presented a polynomial algorithm which finds th
optimal makespan when the communication cost
constant and task duplication is allowed.

When considering UET cases, Andronikos et al. in [1
have given a polynomial time optimal scheduling an
mapping into systolic architectures, where, due to th
special hardware, communication need not be taken in
consideration. In addition to this, in UET scheduling o
arbitrary task graphs, which are produced by gener
nested loops, Koziris et al in [8] have given a polynomia
time schedule and polynomial time efficient mapping ont
a clique of processors, based on PERT techniques.

When both computation and communication times ar
restricted to have unit time length, it is known tha
scheduling UET-UCT graphs with bounded number o
processors is NP-complete as Rayward-Smith proved
[12] or Picouleau in [11] by reduction from the
unbounded UET-UCT instance. Even the case o
unlimited processors, when no task duplication is allowe
is in general polynomially intractable [10]. On the othe
hand, using task duplication, Colin et Chretienne in [6
have presented a polynomial optimal schedule fo
arbitrary task graphs with UET and SCT (Smal
Communication Times, thus including UCT). Since the
arbitrary task graph scheduling with UET- UCT and no
duplication with unlimited processors is NP-complete
researchers have focused on special cases of DAGs. In
Chretienne presented an algorithm linear in the cardinali
nology (GSRT) under the PENED/1405 project.

IPPS 1997
ISSN 1063-7133/97 $10.00 © 1997 IEEE

C

s

T
o
n
r
a

h
d
 n
a
it

 w

th
a

le
li
n

en
fi
h
tio
 t
th
id
a

a

se
n
rm
o
]

w

xa
o

iv
w
 n
w

iv

 n
of the vertices of the graph, for optimal makespan on S
in-trees and out-trees (thus covering UCT). In addition
this, there exist polynomial optimal solutions for Serie
Parallel digraphs, bipartite graphs and trees with UCT
surveyed in [5].

This paper solves the problem of UET-UC
scheduling for task graphs having the form of a grid
unbounded number of processors, assuming
duplication. Grids and particularly generalized grids a
typical task graphs, which model most of the sign
processing algorithms and linear algebra methods suc
matrix multiplication, LU decomposition etc. We exten
the simple grid model of [2] by considering generalized
dimensional grids. We prove that the time and sp
scheduling problem for generalized grid is low complex
tractable. We calculate the optimal makespan for UET-
UCT grids. Having established the optimal makespan,
calculate the optimal number of processors, i.e., the
minimum number of processors required to achieve
optimal makespan. We present an optimal time and sp
scheduling policy for UET-UCT grids. Our schedu
partitions the vertices of the grid into disjoint sets that
on a family of parallel hyperplanes. Each hyperpla
contains vertices, which are executed on differ
processors at the same time. The hyperplanes are de
differently in each case due to the fact that in t
UET/UCT case we must also consider the communica
overhead. When communication is taken into account,
maximal coordinate of the grid determines the form of
optimal hyperplane. In addition to the above, we prov
the reader with two scheduling algorithms which calcul
the exact time instant and processor number, where
arbitrary vertex of the grid is to be executed under
optimal schedule. The time complexity of the
algorithms is independent of the grid size and depe
only on the dimension n of the grid. Thus they outperfo
all previously known PERT or CPM techniques f
UET/UET-UCT scheduling of general task graphs [5
Since we exploit the regularity of the grid task graph,
need not navigate through the graph in polynomial time
calculate the properties of a task node. We calculate
any task, in constant time, given its coordinates, the e
execution time, under an optimal schedule, and the t
number of adequate processors.

The paper is organized as follows: In Section 2 we g
the notation and some definitions and in Section 3
present the UET-UCT optimal scheduling strategy for
dimensional generalized grids. Finally in Section 4
establish the minimum number of processors adequate
scheduling UET-UCT grids and we present an illustrat
example of a 3-D grid.
T
to
-
as

n
o

e
l

 as

-
ce
y

e

e
ce

e
e
t

ned
e
n

he
e
e
te
an
n

ds

r
.
e
to
for
ct

tal

e
e
-
e
for
e

2. Generalized Grids

In this section we introduce the concept of generalized
grid, which is an enhancement of the usual grid model.

2.1. Notation

In the rest of the paper the following notation is used:
• N is the set of naturals.
• n is the dimension of the grid.
• GPn

 is the n-dimensional grid with terminal point

Pn=(u1, …, un).
• GVS is the grid vector set, i.e., the set of the
vectors of the grid.

2.2. Basic Concepts

Definition 2.1. The initial segment of Nn with
terminal point Pn=(u1, …, un)∈Nn, denoted N0(Pn), is the
set {(k1, …, kn)∈Nn | 0≤ki≤ui, 1≤i≤n}. ■

Definition 2.2. Let ei be)

in

0 , ,0 ,1 ,

1i

0 , ,0(
321

K

321

K

−−
, 1≤i≤n.

The grid vector set, denoted GVS, is the set {d=(d1, ...,

dn)∈Nn | d=ë1e1+ … +ënen, where
i 1

n

=
∑ëi>0 and ëi∈{0, 1},

1≤i≤n}. Given a d∈GVS, support(d) is the number of non
zero coordinates of d. ■
Definition 2.3. The generalized n-dimensional grid
with terminal point Pn, denoted GPn

, is the DAG with

vertices the set N0(Pn) and directed edges the set {(i,
j)∈(N0(Pn))

2 | j=i+d, d∈GVS}. ■
The following properties hold:

(1) All the n coordinates of the vectors of the GVS are
either 0 or 1. Naturally, the 0 vector has been excluded,
which means that support(d)≥1 ∀d∈GVS. The vectors
that have exactly one coordinate 1 and all other 0 are the
unitary vectors ei, 1≤i≤n.

(2) It is trivial to see that |GVS|=∑
=

n

1i
i

n
=2n-1.

Definition 2.4. For every vertex j of a grid GPn
, we

define the following sets:
(1) IN(j) = { i∈N0(Pn) | j=i+d, where d∈GVS}, and
(2) OUT(j) = { i∈N0(Pn) | i=j+d, where d∈GVS}. ■

The directed edges of a grid induce a partial ordering
over the vertices in a natural way. If i and j are two
vertices of a grid, we write i<j iff ∃d1…∃dk∈GVS such
that j=i+d1+ … +dk.

The intuition behind the partial ordering notion is that
the edges represent precedence constraints that have to be
satisfied in order to correctly complete the tasks
represented by the vertices. The formal definition of the

ir

 a

st
he

rt

al

In
at
y,
 to

-
l
on
e
T
y,
ted

ts.

e
.

schedule must reflect our intuition that a vertex j correctly
begins its execution at instant k iff all the vertices i∈IN(j)
have completed their execution and communicated the
results (if needed) to j by that instant.
Definition 2.5.
• A schedule for the grid GPn

, denoted S(GPn), is an

ordered couple (STIME, SPROC), where STIME and SPROC are
the time and processor schedules, respectively, defined
follows:
(1) SPROC: N0(Pn)→{0, …, m}, m∈N, such that task j is
assigned to processor SPROC(j), and
(2) STIME: N0(Pn)→N such that ∀j∈N0(Pn)∀i∈IN(j)

STIME(j)-STIME(i) ≥

≠+)(S)(S if ,

)(S=)(S if ,

PROCPROC

PROCPROC

ji

ji

cp

p
, where p

is the processing time and c the communication delay.
• The makespan of a time schedule STIME for the grid
GPn, denoted M(STIME), is max{STIME(j)+p | j∈N0(Pn)},
where p is the processing time.
• Given the schedule S(GPn)=(STIME, SPROC), NPROC =

max{|{j∈N0(Pn) : STIME(j)=k}| : 0≤k≤M(STIME)}. ■
The makespan gives the completion time of the la

task and, therefore, determines the time required for t
completion of the whole grid. NPROC gives the maximum
number of processors required by the specific schedule.

In case of UET we assume p=1, c=0, and in case of
UET/UCT we assume p=c=1.

In this paper, our objectives are:
(1) To find an optimal time schedule STIMEOPT

, i.e., a

schedule whose makespan is minimum.
(2) To establish the optimal number of processors
NPROCOPT

, i.e., the minimum number of processors

required to execute an optimal time schedule.
(3) To find an optimal space schedule SPROCOPT

 that

realizes STIMEOPT
 using NPROCOPT

 processors.

A schedule (STIMEOPT
, SPROCOPT

) is called optimal and is

denoted SOPT(GPn
).

Theorem 2.1. For every grid GPn and every time
schedule STIME we have:

M(STIME) = STIME(Pn)+p, where p is the processing
time.
Proof

First, notice that STIME(Pn)>STIME(j), ∀j∈N0(Pn)-{Pn}
for every time schedule STIME. To prove that, let us
assume to the contrary that for some j≠Pn we have
STIME(j)≥STIME(Pn). However, if j≠Pn then j<Pn and from
Definition 2.5 we derive STIME(Pn)>STIME(j), which is a
contradiction. It must, therefore, be the case that STIME(Pn)
=max{STIME(j) | j∈N0(Pn)}, i.e., M(STIME)=STIME(Pn)+p,
where p is the processing time. ❐

By Definition 2.5, an optimal time schedule STIMEOPT

achieves the minimum makespan. Theorem 2.1 asse
s

s

that the makespan is the execution time of the termin
point Pn. Thus, an optimal time schedule STIMEOPT

schedules Pn to be executed at the least possible time.
what follows, we first establish the least possible time
which Pn can be executed and then, the scheduling polic
which organizes the execution of the other nodes so as
achieve the optimal execution time for Pn.

3. Optimal Parallel Time for UET-UCT

In this section, we shall study the generalized UET
UCT grids. We partition the vertices of a grid into paralle
hyperplanes. However, the presence of communicati
delays imposes further difficulties, which differentiate th
equation of the optimal hyperplane from the simple UE
case. We prove that under an optimal scheduling polic
all vertices belonging to the same hyperplane are execu
at the same time instant.
Example 3.1. Given an arbitrary j which is
executed at time k, consider the set OUT(j). Under any
optimal scheduling strategy, at most one i∈OUT(j) will be
executed at time k+1 and all others at later time instan
Obviously, the issue here is the selection of the i that will
lead to the optimal makespan. It will be shown that th
maximal coordinate of the grid determines this selection

Fig. 1: An optimal schedule for G P2.

Fig. 2: An optimal schedule for G P2.

o
o
th

l

f

c

l

it

o
th

ay

n

s
to
al

e

of

r

of
e

al

.

e
er

the
e

are
le

f

In the UET-UCT case, due to the presence
communication delays, there is no unique family
hyperplanes that are optimal for every grid. Instead,
family of optimal hyperplanes depends on the maxim
coordinate of the terminal point. For the grid GP2

 (see Fig.

1) the optimal hyperplanes are x1+2x2=k, 0≤k≤10,
whereas for the grid G

2P′ (see Fig. 2) the optima

hyperplanes are 2x1+x2=k, 0≤k≤10. ❐

Definition 3.1. Given the grid GPn
, Ði(k), 1≤i≤n, is

the set {(k1, …, kn)∈N0(Pn) | 2(x1+ … +xi-1+xi+1+ …
+xn)+xi=k, k∈N}. ■

Geometrically, Ði(k) consists of the common points o
the grid G(Pn) and the n-1 dimensional hyperplane 2(x1+
… +xi-1+xi+1+ … +xn)+xi=k.
Lemma 3.1. For every grid GPn

, with Pn=(u1, …,

un), the following hold:
(1) Ði(0) = {0} and Ði(2u1+ … +2ui-1+ui+2ui+1+ …
+2un) = {Pn},
(2) Ði(k) ≠ ∅, 0≤k≤2(u1+…+ui-1+ui+1+…+un)+ui,
(3) Ði(k) = ∅, when k>2(u1+…+ui-1+ui+1+…+un)+ui,
(4) ∀j∈Ði(k)∃r(1≤r≤n) j+er∈N0(Pn), 0≤k<2(u1+ … +ui-

1+ui+1+ … +un)+ui. ❐
Lemma 3.2 presents the relation between verti

belonging to successive hyperplanes Ði(k), Ði(k+1) and
Ði(k+2). From any vertex j belonging to Ði(k+2), if we
backtrack using the ei vector, the resulting vertex wil
definitely belong to the previous Ði(k+1) plane. This
property reflects the fact that all points connected w
vector ei will be executed on successive time steps by the
same processor. Thus, the communication delay due tei

is zero. On the other hand if we go back using any o
er≠ei, the resulting vertex will be on the Ði(k) plane. In
this case, the er edge imposes a unit communication del
Finally, if we backtrack from any vertex j belonging to
Ði(k+2), using an arbitrary vector d≠er, 1≤r≤n, the
resulting vertex will belong to a previous hyperpla
Ði(r), r<k.
Lemma 3.2. For every grid GPn

, with Pn=(u1, …,

un), the following hold:
(1) If j∈Ði(k+1) and j -ei∈N0(Pn), then j -ei∈Ði(k),
0≤k<2(u1+ … +ui-1+ui+1+ … +un)+ui,
(2) If j∈Ði(k+2) and j -er∈N0(Pn), then j -er∈Ði(k),
1≤r≠i≤n, 0≤k<2(u1+ … +ui-1+ui+1+ … +un)+ui-1,

(3) N0(Pn)∩(
r 1

r i

n

=
≠

U(Ði(k+2)-er)∪(Ði(k+1)-ei)) = Ði(k),

0≤k<2(u1+ … +ui-1+ui+1+ … +un)+ui-1,

(4) N0(Pn)∩
d

d e

∈
≠
GVS

r

U (Ði(k+2)-d) ⊆
r=k+3-2n

k-1

U Ði(r), 0≤k<2(u1+

… +ui-1+ui+1+ … +un)+ui-1. ❐
f
f
e

al

es

h

er

.

e

Now that we have partitioned the grid into hyperplane
and established the relation among vertices belonging
successive hyperplanes, we can present the optim
scheduling policy based on this partitioning. The
following lemma gives the least possible execution tim
for every vertex of the grid. Every vertex j=(k1, …, kn) has
a maximal coordinate, i.e., a coordinate ki for which ki≥kr,
1≤r≤n. It can be proved that the earliest execution time
j is 2(k1+ … +ki-1+ki+1+ … +kn)+ki, where ki is a maximal
coordinate of j .
Lemma 3.3. Let GPn

 be a UET-UCT grid and let

ki be a maximal coordinate of vertex j=(k1, …, kn). Then
the earliest execution time of j is k if j∈Ði(k). ❐

Now, we can establish the optimal execution time fo
any UET-UCT grid GPn.
Theorem 3.1. Let ui be a maximal coordinate of the
terminal point Pn=(u1, …, un) of the UET-UCT grid GPn

.

Then M(STIMEOPT
)=2(u1+ … +ui-1+ui+1+ … +un)+ui+1.

Proof
We know that M(STIMEOPT

)=STIMEOPT
(Pn)+1 (Theorem

2.1); consequently, Lemma 3.3 implies that STIMEOPT
(Pn) =

2(u1+ … +ui-1+ui+1+ … +un)+ui+1. ❐

3.1. Optimal Time Scheduling Policy

In the UET-UCT case we can not execute all vertices
the grid at the earliest possible time if we want to achiev
the optimal makespan. As a result, the number of different
optimal time schedules equals the number of maxim
coordinates of the terminal point of the grid. If ui is a
maximal coordinate of Pn, the following time schedule is
optimal: STIMEOPT

(j)=2(k1+ … +ki-1+ki+1+ … +kn)+ki,

where j=(k1, …, kn)∈N0(Pn).
Example 3.2. The optimal schedule for the grids
GP2

 and GP3
 are depicted in Fig. 1 and Fig. 4, respectively

In order to achieve the optimal time schedule for th
terminal point, we have to execute certain points at a lat
time. In GP3

 these points are of the form k2e2+k3e3, where

0≤k2≤2 and 0≤k3≤1 (see Fig. 3). The vertices with the
same y and z coordinates (Fig. 3) must be executed on
same processor, which means that the optimal tim
schedule must execute the vertices of Ð1(k) at instant k,
0≤k≤9 (see Fig. 4), i.e., we have STIMEOPT

(P3)=9. The

optimal time schedule is given in Table 1; the row
headings are the processors and the column headings
the execution times of the vertices. Note that this schedu
is not optimal in terms of processors. ❐

4. Optimal Number of Processors with UCT

In this section we shall establish the optimal number o
processors for UET-UCT grids, using the optimal time

s
c

n

t

te

r

scheduling policy of Section 3, which determines the lea
possible number of processors required at every instan
k. In what follows, ÐiMAX

, 1≤i≤n, denotes the maximum

value of |{Ði(k)}|, 0≤k≤2(u1+ … +ui-1+ui+1+ … +un)+ui.

Fig. 3: Execution Time for G P3.

Fig. 4: An optimal scheduling of G P3.

Table 1: The optimal time schedule for G P3.

0 1 2 3 4 5 6 7 8 9
P0 (0,0,0) (1,0,0) (2,0,0) (3,0,0)
P1 (0,0,1) (1,0,1) (2,0,1) (3,0,1)
P2 (0,1,0) (1,1,0) (2,1,0) (3,1,0)
P3 (0,1,1) (1,1,1) (2,1,1) (3,1,1)
P4 (0,2,0) (1,2,0) (2,2,0) (3,2,0)
P5 (0,2,1) (1,2,1) (2,2,1) (3,2,1)

Definition 4.1. Given an optimal time schedule for
the grid GPn

, the k-th concurrent antichain of GPn
,

0≤k≤u1+ …+un, denoted CAk, is the set {j |
STIMEOPT

(j)=k}. A concurrent antichain is maximal,

denoted CAM, iff |CAM|≥|CAk|, 0≤k≤u1+ …+un. ■
t
e

Lemma 4.1. For every UET-UCT grid GPn
, with

terminal point Pn=(u1, …, un), |Ði(k)| =

∑ ∑
=

−+′−−+′−

+−+

−

−

+ n

1r

r1r

1-n

1)1u(...)1u(
2

k
n

)1(

1n

1
2

k
n

, where ui′=

2

ui and ur′=ur, 1≤r≠i≤n, 0≤k≤2(u1+ … +ui-

1+ui+1+ … +un)+ui.
Proof

The cardinality of Ði(k) is equal to the number of
integer solutions of the equation 2x1+ … +2xi-1+2xi+1+ …
+2xn+xi=k, 0≤k≤2(u1+ … +ui-1+ui+1+ … +un)+ui (1), such
that 0≤xr<ur+1. One can verify that this number is equal to
the number of integer solutions of the equation x1′+ …

+xi′+ … +xn′=

2

k , where 0≤xi<

2

ui +1 and 0≤xr<ur+1,

1≤r≠i≤n. This number is given by the following formula:

∑ ∑
=

−+′−−+′−

+−+

−

−

+ n

1r

r1r

1-n

1)1u(...)1u(
2

k
n

)1(

1n

1
2

k
n .

In the above formula, n is the dimension of the grid and
the inner summation ranges over all r-combinations of
(see [3]). ❐

The following two corollaries follow immediately from
Lemma 4.1.
Corollary 4.1. Let Pn=(u1, …, un) be the terminal
point of the grid GPn

 and let ui=ur, 1≤r≠i≤n. Then |Ði(k)|

=|Ðr(k)|, 0≤k≤2(u1+ … +ui-1+ui+1+ … +un)+ui. ❐
Corollary 4.2. For every UET-UCT grid GPn

, with

terminal point Pn=(u1, …, un), we have ÐiMAX
=

|Ði(

 +++++ +

2

u+)u...uu ...2(u in1i1-i1)|. ❐

Lemma 4.2. Let ui be a maximal coordinate of the
terminal point Pn=(u1, …, un) of the grid GPn

. Then Ði(k) =

CAk, 0≤k≤2(u1+ … +ui-1+ui+1+ … +un)+ui.
From Section 3 we know that different maximal

coordinates of the terminal point correspond to differen
optimal time schedules. If we combine this fact with
Corollary 4.1, we deduce that any two CAk and CAk′
corresponding to different optimal time schedules have
the same cardinality. We can, therefore, proceed to sta
the following lemma.
Lemma 4.3. Let CAMAX be a maximal concurrent
antichain corresponding to an optimal time schedule fo
the grid GPn

, with Pn=(u1, …, un). Then |CAMAX| ≤
NPROCOPT

. ❐

Theorem 4.1. Let ui be a maximal coordinate of the
terminal point Pn=(u1, …, un) of the UET-UCT grid GPn

.

Then NPROCOPT
 = ÐiMAX

. ❐

.
g

e
o
s
T
.
e

a
ti
e

-
i
 a
o
e

to
n

t
g

er
f
of

e

r

.

s
t

.

4.1. Optimal Scheduling Policy

Lemma 4.3 in conjunction with Lemma 4.1 gives a
straightforward method for scheduling UET-UCT grids
From Section 3 we know that any optimal schedulin
policy demands that STIMEOPT

(j)=k for every point j=(k1,

…, kn)∈Ði(k), where k=2(k1+ … +ki-1+ki+1+ … +kn)+ki

and ui is a maximal coordinate of Pn. If ki≥1, then j must
be executed by the same processor that completed vertices
(k1, …, ki-1, 0, ki+1, …, kn), …, (k1, …, ki-1, ki-1, ki+1, …,
kn). If ki=0, then j can be executed by any of the availabl
processors for the k time instant. The exact process
where j will be executed can be easily calculated. Thi
gives us a size independent scheduling strategy for UE
UCT grids with unbounded number of processors
Obviously, the calculation of the optimal schedule for th
whole grid is, inevitably, linear in the size of the grid.
Example 4.1. For GP3

, P3=(3, 2, 1), we get |Ði(k)| =

−

−

+

−

+

−

+

−

+

−

+

2

5
2

k

2

2
2

k

2

3
2

k
2

2

1
2

k

2
2

k
2

2

2
2

k
,

0≤k≤9 (see Table 2). Thus, NPROCOPT
=ÐMAX=4. In Table

3, we present the optimal schedule; the row headings
the processors and the column headings are the execu
times of the vertices. It is important to note that we reus
processing elements 0 and 1. ❐

Table 2: The cardinality of Ði(k) for G P3.

k 0 1 2 3 4 5 6 7 8 9

num of procs: 1 1 3 3 4 4 3 3 1 1

Table 3: The optimal UET-UCT schedule for G P3.

0 1 2 3 4 5 6 7 8 9
P0 (0,0,0) (1,0,0) (2,0,0) (3,0,0)
P1 (0,0,1) (1,0,1) (2,0,1) (3,0,1)
P2 (0,1,0) (1,1,0) (2,1,0) (3,1,0)
P3 (0,1,1) (1,1,1) (2,1,1) (3,1,1)
P0 (0,2,0) (1,2,0) (2,2,0) (3,2,0)
P1 (0,2,1) (1,2,1) (2,2,1) (3,2,1)

5. Conclusion

In this paper we have proved that UET-UCT
scheduling of task graphs having the form of n
dimensional generalized grids is not only tractable but
also has a constant time solution. We have presented
optimal strategy for both time and space scheduling
these grids with and without communication delays. Th
proposed time strategy for UET-UCT graphs is proved
achieve the minimum thus optimal makespan. In additio
to this, the exact lowest number of processors needed
execute a grid task graph with UET and uni
communication delays is calculated. Our schedulin
r

-

re
on

t
n

f

to

achieves the optimal makespan and the minimum numb
of processors in constant time. While the case o
unbounded number of processors is solved, the case
bounded number of available processors remains open.

References
1. Andronikos, T., Koziris, N., Tsiatsoulis, Z.,

Papakonstantinou, G., and Tsanakas, P. Lower Tim
and Processor Bounds for Efficient Mapping of
Uniform Dependence Algorithms into Systolic Arrays.
To appear in Journal of Parallel Algorithms and
Applications.

2. Bampis, E.,. Delorme, C., and Konig, J.C. Optimal
Schedules for d-D Grid Graphs with Communication
Delays. Symposium on Theoretical Aspects of Computer
Science (STACS96). Grenoble France 1996.

3. Berman, G., and Fryer, K.D. Introduction to
Combinatorics. Academic Press, New York, 1972.

4. Chretienne, P. A Polynomial algorithm to Optimally
Schedule Tasks over a Virtual Distributed System unde
Tree-like Precedence Constraints. Eur. J. Oper. Res. 43,
pp. 225-230, 1989.

5. Chretienne, P. and Picouleau C. Scheduling with
Communication Delays: A Survey, in Scheduling
Theory and its Applications pp 65-90. John Wiley &
Sons 1995.

6. Colin, J. Y., and Chretienne, P. CPM Scheduling with
Small Communication Delays and Task Duplication.
Oper. Res. 39, pp. 680-684.

7. Jung, H., Kirousis, L., and Spirakis, P. Lower Bounds
and Efficient Algorithms for multiprocessor Scheduling
of DAGS with communication Delays. Proceedings of
1st ACM SPAA 1989, pp. 254-264, and Information
and Computation 105, pp 94-104, 1993.

8. Koziris, N., Papakonstantinou, G., and Tsanakas, P
Optimal Time and Efficient Space Free Scheduling For
Nested Loops. The Computer Journal. 39, 5, pp. 439-
448, 1996.

9. Gerasoulis, A., and Yang, T. On the Granularity and
Clustering of Directed Acyclic Task Graphs. IEEE
Trans. Parallel Distrib. Syst. 4, 6, pp. 686-701, 1993.

10. Papadimitriou, C., and Yannakakis, M. Toward an
Architecture-Independent Analysis of Parallel
Algorithms. SIAM J. Comput. 19, pp. 322-328, 1990.
Extended Abstract in Proceedings STOC 1988.

11. Picouleau, C. Etude de Problems d’ Optimization dan
les Systemes Distribues. These, Universite Pierre e
Marie Curie, 1992.

12. Rayward-Smith, V.J. UET Scheduling with Unit
Interprocessor Communication Delays and Unlimited
Number of Processors. Discrete Applied Mathematics.
18, pp. 55-71, 1987.

13. Ullman, J. NP-Complete Scheduling problems. Journal
of Computer and Syst. Sciences. 10, pp. 384-393, 1975.

14. T. Yang, T., and Gerasoulis, A. DSC: Scheduling
Parallel Tasks on an Unbounded Number of Processors
IEEE Trans. Parallel Distrib. Syst. 5, 9, pp. 951-967,
1994.

	Welcome to IPPS Conference Proceedings
	IPPS 1997
	Introduction
	Author Index
	Session Index

