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Abstract

This paper compares the performance of three program-
ming paradigms for the parallelization of nested loop al-
gorithms onto SMP clusters. More specifically, we propose
three alternative models for tiled nested loop algorithms,
namely a pure message passing paradigm, as well as two
hybrid ones, that implement communication both through
message passing and shared memory access. The hybrid
models adopt an advanced hyperplane scheduling scheme,
that allows both for minimal thread synchronization, as well
as for pipelined execution with overlapping of computation
and communication phases. We focus on the experimental
evaluation of all three models, and test their performance
against several iteration spaces and parallelization grains
with the aid of a typical micro-kernel benchmark. We con-
clude that the hybrid models can in some cases be more
beneficial compared to the monolithic pure message passing
model, as they exploit better the configuration characteris-
tics of an hierarchical parallel platform, such as an SMP
cluster.

1 Introduction

Clusters have become the de-facto standard in parallel
processing due to their high performance to price ratio.
SMP clusters are also gaining on popularity, mainly under
the assumption of fast interconnection networks and mem-
ory buses. SMP clusters can be thought of as an hierarchical
two-level parallel architecture, since they combine features
of shared and distributed memory machines. As a conse-
quence, there is an active research interest in hybrid parallel
programming models, e.g. models that perform communi-
cation both through message passing and memory access.�This work was partially funded by IRAKLITOS - OP ”EPEAEK II”.

Intuitively, a parallel paradigm that uses memory access for
intra-node communication and message passing for inter-
node communication seems to exploit better the character-
istics of an SMP cluster.

The hybrid model has already been applied to real sci-
entific applications ([7], [3], [11], [6]). Usually, program-
mers resort to MPI for the message passing communication,
while OpenMP is becoming a popular interface for writing
multi-threaded applications. Nevertheless, recent scientific
work enlightens the complexity of the many aspects, that af-
fect the overall performance of hybrid programs ([2], [10],
[13]). The application of hybrid programming paradigms
for the parallelization of algorithms and applications is,in
many cases, inferior compared to a pure MPI paralleliza-
tion, as MPI libraries tend to be highly optimized for mes-
sage passing communication and provide poor support for
thread management. The need for an MPI implementation
that will efficiently support the hybrid model has been spot-
ted by the research community ([14], [12]).

However, most of the work on the hybrid OpenMP-MPI
programming paradigms addresses fine-grain paralleliza-
tion, e.g. incremental parallelization of computationally
intensive code parts through OpenMP work sharing con-
structs. Applications are submitted to performance profil-
ing, the computationally intensive parts are extracted, and
are further parallelized with the aid of OpenMP work shar-
ing constructs. Furthermore, the hybrid parallelization of al-
gorithms that impose data dependencies is avoided, mainly
due to the high thread synchronization cost. Usually, only
”embarrassingly parallel” algorithms are submitted to in-
cremental OpenMP parallelization, whereDOALL loops are
distributed among OpenMP threads with the aid of work
sharing constructs.

Nested loop algorithms represent an important class of
computationally intensive scientific applications. Such al-
gorithms usually impose various data dependencies, that



result to the need for frequent data exchange when paral-
lelized. The typical parallelization of these algorithms in-
volves the coarse-grain decomposition of the algorithm’s
computation into smaller subtasks, that are distributed to
processors (tiled code form). Communication is done
through message passing, where messages are exchanged
per atomic tile computation, thus achieving a reduction in
the total number of messages required. However, such
pure MPI implementations fail to take into account the hi-
erarchical architecture characteristics of an SMP cluster, as
their nodes, despite having shared memory, perform both
intra-node and inter-node communication through the mes-
sage passing API. In some cases, certain MPI implementa-
tions allow for the exchange of intra-node messages through
shared memory regions, but, either way, all communication
is conducted through IPC mechanisms, and therefore incurs
an unnecessarily high overhead for the case of MPI pro-
cesses residing in the same SMP node.

In this paper we propose two hybrid MPI-OpenMP pro-
gramming paradigms for the efficient parallelization of tiled
nested loop algorithms, namely a fine-grain model, as well
as a coarse-grain one. We address algorithms with con-
stant flow data dependencies, which often result to relatively
high communication needs. We further apply an advanced
pipelined hyperplane scheduling, that allows for minimal
overall completion time by reducing thread synchroniza-
tion, while at the same time preserving the data dependen-
cies of the original algorithm. In order to experimentally
verify the relative performance of the hybrid models, we
also propose an efficient pure MPI parallelization paradigm
for our class of target applications, and perform an exten-
sive performance comparison of all three models with the
aid of a suitable micro-kernel benchmark. For each itera-
tion space of the algorithm, we propose the parallelization
approach that will deliver higher performance by estimating
the communication overhead of each programming model.

The rest of the paper is organized as follows: Section 2
briefly presents our algorithmic model and our target ar-
chitecture. Section 3 refers to our pure MPI paralleliza-
tion paradigm, while Section 4 describes the two proposed
hybrid parallelization paradigms, as well as the adopted
pipelined hyperplane scheduling. Section 5 analyzes the ex-
perimental results obtained for the ADI micro-kernel bench-
mark, while Section 6 summarizes our conclusions and pro-
poses future work.

2 Algorithmic model - Target architecture

Our parallelization paradigms can be applied to anyn-
dimensional nested loop, that has already been transformed
using a tiling transformation to deliver a coarse-grain
parallel equivalent program. Tiling is a popular loop
transformation used to achieve coarse-grain parallelism on

distributed memory machines and enhance data locality on
uniprocessors. The general form of such parallel algorithms
follows the scheme below:

FORACROSS tile0 DO

...

FORACROSS tilen�2 DO

FOR tilen�1 DO

Receive( ~tile);
Compute( ~tile);
Send( ~tile);

END FOR

END FORACROSS

...

END FORACROSS

The iteration space of the original algorithm has been
partitioned into atomic execution units, calledtiles. In the
above code, tiles are identified by ann-dimensional vector~tile = (tile0; : : : ; tilen�1). FORACROSS implies parallel
execution, as opposed to sequential execution (FOR - see
also [15]). The parallel algorithm implements computation
distribution across then � 1 outermost dimensions, and
each processor computes a sequence of tiles along the
innermostn-th dimension. It can be theoretically proved
that, if the innermost dimension is the longest iteration
space dimension, the above scheduling will deliver minimal
overall execution time according to the UET-UCT model
([9]).

On the other hand, our target architecture concerns SMP
clusters of PCs. We adopt a generic approach and assumenum nodes cluster nodes andnum threads threads of ex-
ecution per node. Obviously, for a given SMP cluster archi-
tecture, one would probably select the number of execution
threads to match the number of available CPUs in a node,
but nevertheless our approach considers, for the sake of gen-
erality, both the number of nodes as well as the number of
execution threads per node to be user-defined parameters.

3 Pure MPI parallelization

Pure MPI parallelization of the algorithms described
above is based on the tiling transformation. The complete
methodology is described more extensively in [5]. It must
be noted that, since our prime objective was to experimen-
tally verify the performance benefits of the different par-
allelization models, for the sake of simplicity we resorted
to hand-made parallelization, as opposed to automatic par-
allelization. Nevertheless, all parallelization models can
be automatically generated with minimal compilation time
overhead according to the work presented in [4], which re-
flects the automatic parallelization method for the pure MPI
model and can easily be applied in the hybrid model, as



well.
Furthermore, the advancedpipelinedscheduling scheme

([9]) is adopted as follows: In each time step, an MPI pro-
cess concurrently computes a tile, receives data required for
the computation of the next tile and sends data computed at
the previous tile. For the true overlapping of computation
and communication, as theoretically implied by the above
scheme, non-blocking MPI communication primitives are
used and DMA support is assumed. Unfortunately, we used
the MPICH implementation over FastEthernet (chp4 ADI-
2 device), which does not support such advanced DMA-
driven non-blocking communication, but nevertheless the
same limitations hold for our hybrid model and are thus not
likely to affect the performance comparison.

Let ~tile = (tile0; : : : ; tilen�1) identify the coordinates
of a tile, ~nod = (nod0; : : : ; nodn�2) identify an MPI
process in cartesian coordinates andx = (x0; : : : ; xn�1)
denote the tile size. The core of the pure MPI code,
under the pipelined scheduling scheme ([9]), resembles the
following:tile0 = nod0;
...tilen�2 = nodn�2;
FOR tilen�1 = 0 TO bmaxn�1�minn�1xn�1 
 DO

Pack(snd buf, tilen�1 � 1, ~nod);
MPI Isend(snd buf, dest( ~nod));
MPI Irecv(recv buf, src( ~nod));
Compute( ~tile);
MPI Waitall;

Unpack(recv buf, tilen�1 + 1, ~nod);
END FOR

Note that each MPI process assumes the execution of
tiles successive along then-th coordinate (tilen�1). Equiv-
alently, all tiles with the samen� 1 outermost coordinates
(tile0; : : : ; tilen�2) are mapped to the same MPI process,
and thus thesen� 1 coordinates can be used to identify the
MPI rank of the owner process, as shown in the above code.

4 Hybrid MPI-OpenMP parallelization

The hybrid MPI-OpenMP programming model intu-
itively matches the characteristics of a cluster of SMP
nodes, since it allows for a two-level communication pattern
that distinguishes between intra- and inter-node communi-
cation. More specifically, intra-node communication is im-
plemented through common access to each node’s shared
memory, and appropriate synchronization is used to ensure
that data are first calculated and then used, so that the execu-
tion order of the initial algorithm is preserved (thread-level
synchronization). Inversely, inter-node communication is
achieved through message passing between different nodes,

that implicitly enforces node-level synchronization to en-
sure valid data access and execution order.

The different approach of the hybrid models compared
to the pure message passing one is schematically depicted
in Figure 1, where a three dimensional space is mapped on
two dual SMP nodes. Note that in both cases processors
assume the execution of tile sequences along dimensionZ.
Note also that the hybrid model eliminates message passing
communication across theXZ surface.
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   : MPI process 0       : MPI process 2          : MPI communication
   : MPI process 1       : MPI process 3          : OpenMP synchronization
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Y
4 MPI nodes 2 MPI nodes x 2 OpenMP threads

Z

Figure 1. Pure MPI vs Hybrid on two dual SMP
nodes

We propose two main variations of the hybrid model,
namely afine-grainhybrid model and acoarse-grainone.
According to the fine-grain model, the computationally in-
tensive parts of the pure MPI code are incrementally par-
allelized with OpenMP work-sharing directives. According
to the coarse-grain model, threads are spawned close to the
creation of the MPI processes, and the thread ids are used to
enforce an SPMD structure in the hybrid program, similar
to the structure of the pure MPI code.

Both hybrid models implement the advancedhyperplane
scheduling presented in [1], that allows for minimal overall
completion time. The hyperplane scheduling, along with
the variations of the hybrid model are the subject of the fol-
lowing Subsections.

4.1 Hyperplane scheduling

The proposed hyperplane scheduling distributes the tiles
assigned to all threads of a specific process intogroupsthat
can be concurrently executed. Each group contains all tiles
that can be safely executed in parallel by an equal number
of threads without violating the data dependencies of the
initial algorithm. In a way, each group can be considered
as a distinct time step of a process’s execution sequence,



and determines which threads of that process will be exe-
cuting a tile at that time step, and which ones will remain
idle. This scheduling aims at minimizing the total number
of execution steps required for the completion of the hybrid
algorithms.

For our hybrid model, each group of tiles will be identi-
fied by ann-dimensional vector ~group. The first n-1 coordi-
nates of ~group will identify the particular MPI process~nod
this group refers to, while the last coordinate correspondsto
the current time step and will implicitly determine whether
a given thread~th = (th0; : : : ; thn�2) of process ~nod will
be computing at that time step, and if so which tile~tile. For-
mally, given a group denoted by then-dimensional vector~group = (group0; : : : ; groupn�1), the corresponding MPI
process ~nod can be determined by the first n-1 coordinates
of ~group, namelynodi = groupi; 0 � i � n� 2
and the tile ~tile to be executed by OpenMP thread~th of ~nod
can be obtained bytilei = groupi �mi + thi; 0 � i � n� 2
andtilen�1 = groupn�1 �Pn�2i=0 (groupi �mi + thi)
wheremi the number of threads along thei-th dimension
(it holds0 � thi � mi � 1; 0 � i � n� 2).

The value oftilen�1 will establish whether thread~th
will compute during group ~group: If the calculated tile is
valid, namely if it holds0 � tilen�1 � bmaxn�1�minn�1t 
,
then ~th will execute tile ~tile at time step ~groupn�1. In the
opposite case, it will remain idle and wait for the next time
step.

The hyperplane scheduling can be implemented in
OpenMP according to the following pseudo-code scheme:

#pragma omp parallel num threads(num threads)f group0 = nod0;
...groupn�2 = nodn�2;tile0 = nod0 * m0 + th0;
...tilen�2 = nodn�2 * mn�2 + thn�2;
FOR(groupn�1)ftilen�1 = groupn�1 -

Pn�2i=0 tilei;
if(0 � tilen�1 � bmaxn�1�minn�1t 
)

Compute( ~tile);
#pragma omp barriergg

The hyperplane scheduling is more extensively analyzed
in [1].
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Figure 2. Iteration space of ADI

4.2 Fine-grain hybrid parallelization

The fine-grain hybrid implementation applies an
OpenMPparallel work-sharing construct to the tile
computation of the pure MPI code. According to the hyper-
plane scheduling described in Subsection 4.1, at each time
step corresponding to a group instance, the required threads
that are needed for the tile computations are spawned. Inter-
node communication occurs outside the OpenMP parallel
region, so only a trivial MPI thread support level is required
(sometimes referred to asMASTERONLY).

Note that the hyperplane scheduling ensures that all com-
putations, concurrently executed by different threads, donot
violate the execution order of the original algorithm. The
required barrier for the thread synchronization is implic-
itly enforced by exiting the OpenMPparallel construct.
Note also that, under the fine-grain approach, there is an
overhead of the threads data structures re-initializationfor
each time step of the pipelined schedule.

The code of the hybrid fine-grain model resembles the
following:group0 = nod0;
...groupn�2 = nodn�2;
/*for all time steps in current node*/
FOR(groupn�1)f

/*pack previously computed data*/
Pack(snd buf, tilen�1 � 1, ~nod);
/*send communication data*/
MPI Isend(snd buf, dest( ~nod));
/*receive data for next tile*/
MPI Irecv(recv buf, src( ~nod));
#pragma omp parallelf tile0 = nod0 * m0 + th0;
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Figure 14. Computation vs communication profiling for ADI (5 12x128x8192)

...tilen�2 = nodn�2 * mn�2 + thn�2;
/*calculate candidate tile for execution*/tilen�1 = groupn�1 -

Pn�2i=0 tilei;
/*if current thread is to execute a valid tile*/
if(0 � tilen�1 � bmaxn�1�minn�1t 
)

/*compute current tile*/
Compute( ~tile);g

/*wait for communication completion*/
MPI Waitall;

/*unpack communication data*/
Unpack(recv buf, tilen�1 + 1, ~nod);g

As aforementioned, all MPI communication lies outside
the OpenMP parallel construct. Also, note that the OpenMP
parallel directive for the thread creation lies inside an

iterativeFOR loop.

4.3 Coarse-grain hybrid parallelization

According to the coarse-grain model, threads are only
spawned once and their ids are used to determine their flow
of execution in the SPMD-like code. That is, their OpenMP
thread ids are used to determine both their work share, as
well as their communication part. Inter-node communi-
cation occurs within the OpenMPparallel region, but
is completely assumed by the master thread by means of
the OpenMPmaster directive. The reason for this is
that the MPICH implementation used provides at best an
MPI THREAD FUNNELED level of thread safety, allow-
ing only the master thread to call MPI routines. Intra-node
synchronization between the threads is achieved with the
aid of an OpenMPbarrier directive.

It should be noted that the coarse-grain model, as com-
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Figure 3. Processor mapping on 4 dual SMP
nodes

pared to the fine-grain one, compensates the relatively
higher programming complexity with the fact that threads
are initialized only once, thus the respective overhead of
the fine-grain model is diminished. Furthermore, although
communication is entirely assumed by the master thread,
the other threads will be able to perform computation at
the same time, since they have already been spawned (un-
like the fine-grain model). An MPI implementation with
MPI THREAD MULTIPLE thread support level could po-
tentially allow for a much more efficient communication
scheme, according to which all threads would be able
to call MPI routines, although higher message latencies
would be anticipated in such a case. Alternatively, given
a non thread-safe environment, a more sophisticated load-
balancing scheme, that would compensate for the master-
only communication with appropriately balanced computa-
tion distribution, is being considered as future work.

The coarse-grain model can be implemented with the
aid of a code structure similar to the following:

#pragma omp parallelf group0 = nod0;
...groupn�2 = nodn�2;tile0 = nod0 * m0 + th0;
...tilen�2 = nodn�2 * mn�2 + thn�2;
/*for all time steps in current node*/
FOR(groupn�1)f

/*calculate candidate tile for execution*/
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(512x128x8192, 4 SMP nodes)tilen�1 = groupn�1 -

Pn�2i=0 tilei;
#pragma omp masterf

/*pack previously computed data*/
Pack(snd buf, tilen�1 � 1, ~nod);
/*send communication data*/
MPI Isend(snd buf, dest( ~nod));
/*receive data for next tile*/
MPI Irecv(recv buf, src( ~nod));g

/*if current thread is to execute a valid tile*/
if(0 � tilen�1 � bmaxn�1�minn�1t 
)

/*compute current tile*/
Compute( ~tile);

#pragma omp masterf
/*wait for communication completion*/
MPI Waitall;

/*unpack communication data*/
Unpack(recv buf, tilen�1 + 1, ~nod);g

/*synchronize threads for next time step*/
#pragma omp barriergg

5 Experimental results

We have tested the actual performance of all three
programming paradigms with the aid of a micro-kernel
benchmark, namely Alternating Direction Implicit (ADI -
[8]). ADI is a simple three-dimensional perfectly nested
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loop algorithm, that imposes unitary inter-tile dependencies
across all three space directions. It has an iteration space
of X � Y � Z, whereZ is considered to be the longest
algorithm dimension (Figure 2). Schematically, ADI can
be implemented with the aid of following code:

FOR x = 0 TO X DO

FOR y = 0 TO Y DO

FOR z = 0 TO Z DOA[x; y; z℄=f(A[x� 1; y; z℄;A[x; y � 1; z℄; A[x; y; z � 1℄);
ENDFOR

ENDFOR

ENDFOR

We chose to experimentally verify the efficiency of all
proposed models with ADI, as it is a typical micro-kernel
benchmark for tiled nested loop algorithms. Most impor-
tantly, ADI imposes communication in all three unitary di-
rections. Consequently, all parallel implementations of ADI
include a significant amount of communication, and thus
allow the comparison of the three proposed programming
paradigms, which substantially differ in the communication
process and the particular data exchange approach (message
passing as opposed to access to the shared memory of a
node). Although ADI has a well defined, regular communi-
cation scheme, we expect our parallelization paradigms to
deliver high performance even for algorithms with more ir-
regular, process dependent communication patterns, as long
as they span the entire iteration space (that is, some commu-
nication should be required along all unitary space dimen-
sions). If no communication is required along one or more
loop dimensions, then the proposed scheduling schemes are
expected to incur an additional unnecessary overhead, as far
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as the overall performance is concerned.
Our experimental platform is a Pentium III dual-SMP

cluster of 4 nodes. Each node has 2 Pentium III CPUs at
800 MHz, 128 MB of RAM and 256 KB of cache, and
runs Linux with 2.4.20 kernel. We used Intel icc com-
piler version 7.0 for Linux with the following optimization
flags: -O3 -mpcu=pentiumpro -static. Finally,
we used MPI implementation MPICH v. 1.2.5, configured
with the following options: --with-device=ch p4
--with-comm=shared. Note that by configuring
MPICH with the--with-comm=shared option, we en-
sured that all intra-node communication between MPI pro-
cesses of the same SMP node would be achieved with the
aid of shared memory segments in the pure MPI model.

We tried several iteration spaces for the ADI micro-
kernel benchmark, and ran all parallel versions on four SMP
nodes and on two SMP nodes. Moreover, for each itera-
tion space and programming model, we tested variable tile
heights in order to determine the optimal granularity for the
per-tile computation to communication ratio. The follow-
ing subsections illustrate the obtained experimental results
for all aforementioned cases.

5.1 Performance comparison on four SMP nodes

In the first case, we ran all parallel paradigms of ADI
onto four SMP nodes, that is, eight processors in total. Task
decomposition and mapping to processors is applied on theXY surface (Figure 2). According to our computation dis-
tribution scheme, processors assume the execution of se-
quences of tiles that are successive along the dimensionZ
of the algorithm. We choseZ to be 8K (e.g. 8192 itera-
tions), whileX andY ranged from 128 to 512, resulting to
a total number of iterations between 500 millions and two
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billions. For the pure MPI model, we considered a4 � 2
cartesian topology for the eight MPI processes. On the other
hand, for the hybrid models we considered a 2� 2 cartesian
topology for the four MPI processes, and a 2� 1 topology
for the OpenMP threads in each MPI process. The proces-
sor mapping for both cases is shown in Figure 3.

As shown in Figure 3, for larger values ofX we expected
the pure MPI model to perform better under the assumed
mapping, as the hybrid models not only fail to relieve com-
munication across the longX dimension, but further use
half the MPI processes (four as opposed to eight) to perform
that message passing communication. Indeed, as shown in
Figure 4, forX = 512 andY = 128, the pure MPI model
outperforms the hybrid variations. ForX = Y = 512
(Figure 5), we notice that all three implementations perform
quite similarly, as the efficient message passing communi-
cation of the pure MPI model across dimensionX is fully
mitigated by the faster intra-node communication of the hy-
brid models across dimensionY . However, for large val-
ues ofY , the hybrid implementations clearly outperform
the pure MPI one (Figure 6) due to the lightweight intra-
node communication across the longY dimension of the
hybrid models. More specifically, the hybrid models per-
form intra-node communication through common access to
the SMP node’s memory, and therefore significantly relieve
the heavy communication load across the longY dimen-
sion.
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5.2 Performance comparison on two SMP nodes

We have also performed a series of experiments on two
SMP nodes (four processors in total). The reason for doing
that is that generally we have chosen the cartesian topology
for the pure MPI paradigm in a scheduling-efficient way, so
as to minimize the overall startup latency of the parallel al-
gorithm. In the previous case, e.g. when we had eight MPI
processes, one could argue that there were two alternatives
for the selection of the optimal topology, namely 4� 2, as
well as its symmetric one (2� 4). However, with four MPI
processes, there is only one way to apply the scheduling op-
timal cartesian topology, namely a 2� 2 topology. For the
hybrid models, we consider a 2� 1 MPI process topology,
and a 2� 1 OpenMP thread topology in each MPI process
(2 MPI processes� 2 OpenMP threads per MPI process).
Processor mapping on theXY surface for the pure MPI
model and the hybrid ones is schematically depicted in Fig-
ure 7.

As shown in Figure 7, for larger values ofY we ex-
pect the pure MPI model to perform better, since the heavy
message passing communication is not relieved by the hy-
brid models and the pure MPI program uses twice as many
MPI processes to perform that communication. In the oppo-
site case, that is, for larger values ofX , the hybrid models
are expected to deliver higher performance, since they to-
tally eliminate all message passing communication across
the longX dimension.

The experimental results verified the above intuition.
Starting from a relatively large value of dimensionY , the
pure MPI model delivers better performance (Figure 8).
However, as we move to higher values ofX (Figure 9), the
hybrid models are gaining on performance, as anticipated.
ForX = Y (Figure 10), all three implementations perform
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equally well. WhenX becomes larger thanY (Figure 11),
we notice that the hybrid models outperform the pure MPI
one, as they totally eliminate all message passing commu-
nication across the longX dimension. The performance
benefits of the hybrid models become more obvious asX
grows notably larger thanY (Figure 12).

In order to fortify our theoretical explanation of the ob-
tained results, we further conducted some partial profiling
of the computation and communication times. In both cases
(Figure 13 for large values ofY and Figure 14 for large val-
ues ofX), we noticed that partial computation times were
equal in all three programming models, and thus the dif-
ferences in the overall execution times can be attributed to
the differences in communication, as was theoretically an-
ticipated. Note also that the coarse-grain hybrid model per-
forms slightly better than the fine-grain one, as far as the
computational part is concerned, since it avoids the over-
head of thread re-initialization. Nevertheless, the advantage
of the coarse-grain model compared to the fine-grain one
was relatively small, and did not deliver a significant perfor-
mance gain. Last, the individual profiling of computation
and communication times reveals that the overall perfor-
mance degradation at certain tile heights (peaks and troughs
at the graphs) can be attributed to the respective communi-
cation irregularities. For instance, the rapid performance
degradation in the pure MPI model when transiting fromz = 248 to z = 252 (Figure 12) is due to the respective
communication bandwidth reduction (about 0,5 MB/s), ac-
cording to further ping-pong bandwidth measurements that
were conducted.
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6 Conclusions-Future work

In this paper we have tested the performance of three
programming models for the parallelization of nested loop
algorithms with flow data dependencies. Depending on the
particular iteration space of the algorithm, as well as the
assumed processor mapping, the appropriate selection be-
tween the pure MPI model and a hybrid one must be met
in order to obtain higher performance. Generally, hybrid
programming models can potentially match better the archi-
tecture characteristics of an SMP cluster under an appropri-
ate processor mapping, that would replace message passing
communication with synchronized thread-level memory ac-
cess. On the other hand, hybrid models are not efficiently
supported by existing MPI implementations, resulting to an
imbalanced message passing that is performed solely by the
master thread.

We intend to apply a more efficient load balancing
scheme for the coarse-grain model, that will mitigate the
imbalance of the master-only message passing communi-
cation: Since the master thread assumes all message pass-
ing communication under an MPITHREAD FUNNELED
thread support level, it should assume a smaller fraction of
the computational part for a more efficient overall load bal-
ancing between threads of the same node. Last, we intend
to investigate the performance of the various models on ad-
vanced interconnection networks, such as SCI and Myrinet.
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