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Loop Partitioning and Mapping (the systolic approach)

Example loop:

 for i1 = 1 to 4 do
   for i2 = 1 to 3 do
     for i3 = 1 to 3 do
       (loop body)
     end i3
   end i2
 end i1

Through a linear transformation T[n×n]:

T = 



 Π

S
, where �[1×n] and S[(n-1)×n],

we obtain the array of virtual cells needed to compute the
above (initial) index space.
In other words:

(i2�, i3� )T = S·(i1, i2, i3) T
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What needed to be done now: cutting the virtual space into clusters and assign each cluster to a different processor
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The Partitioning Method
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Locally Parallel Globally Sequencial (LPGS)
where

cardinality of clusters = number of processors

Globally Parallel Locally Sequencial (GPLS)
where

number of clusters = number of processors
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Cutting the Virtual Index Space: The consequences…

Available Processors: 3  →  the Virtual (transformed) Space needs to be cut into 3 parts

FIRST ATTEMPT

-----------------------------------------------------------------------------
Two horizontal lines, parallel to horizontal boundary

SECOND ATTEMPT

----------------------------------------------------------------------------
Two lines, parallel to side boundary

i2ï

i3ï d3ï(0,1)

d1ï(1,0)

d2ï(2,1)

Processor 3

Processor 2

Processor 1

Cut Line 2

Cut Line 1

i2ï

i3ï d3ï(0,1)

d1ï(1,0)

d2ï(2,1)

P3
P2

P1

Cut Line 2

Cut Line 1

Result statistics:
¾ Communication cost = 8 + 8 = 16
¾ Processor utilization:

 Processor 1: 5 points
    Processor 2: 10 points
    Processor 3: 5 points

Result statistics:
¾ Communication cost = 10 + 10 = 20
¾ Processor utilization:

 Processor 1: 8 points
    Processor 2: 8 points
    Processor 3: 4 points

� Difference in communication cost as well as in processor utilization
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The h-terminology (Part 1/2)           

¾ h-space: the n-dimensional space that corresponds
to loop's indices (and depth)

For n = 3, a 3-dimensional (index) space is
presented

  i1

i2

i3

¾ h-plane: a linear subspace of (n-1)-dimension
    (a plane in the 3-dimensional space)

For n = 3, two 2-dimensional h-planes are presented
here, the one perpendicular to the other

  i1

i2

i3

'h-' stands for n-dimensional



Section III - Some Terminology

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES                                                                                     7/20

The h-terminology (Part 2/2)

¾ h-line: a linear subspace of (n-2)-dimension
    (a line in the 3-dimensional space)

For n = 3, three 1-dimensional h-lines are presented,
each one perpendicular to other two

i1

i2

i3

¾ h-mesh: a mesh (of processors usually) in the (n-1)-
dimensional space

     (an array of cells connected in a mesh topology)

For n = 3, a 3-dimensional mesh (3×2×3) of
processors is presented

   i1

i2

i3

'h-' stands for n-dimensional
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Communication Costs between Clusters (Introduction)

CUT

cost of a cut = { number of transformed dependence vectors that
                            traverse the cut's h-line }
                    = { density of dependence vectors } × { length of cut }

MAPPING

cost of a mapping  = � { cost values of its individual cuts }

i2ï

i3ï d3ï

d1ï

d2ï

Cluster 3

Cluster 2

Cluster 1

Cut Line 2

Cut Line 1

So:

              cost of a single cut  = { length of the cut } × { overall density (of all dependence vectors)
                                                                           at the direction that is perpendicular to the cut }
or:

cost of a single cut = { length of the cut } × � { density of each dependence vector on the specified direction }
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Communication Cost between Clusters (continuing…)

COST OF A SINGLE CUT

cost of a single cut = { length of the cut } × � { density of each dependence vector on the specified direction }

∑
=

′⋅
⋅=

m

i

ilc
1

  :cut single a ofcost 
p

dp

where:
•  m is the number of distinct dependence vectors, p  is the vector that is perpendicular to the cut,

•  id ′  is a single transformed dependence vector, u  is the Euclidean norm of vector u ,

•  l is the h-length of the segment of the h-line that corresponds to the cut and is within the bounds of the transformed h-
space.

COST OF A MAPPING

cost of a mapping = { sum of costs of all cuts that comprise the mapping }

{ } ∑ ∑∑ 
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The Procedure at a Glance

Calculating the binding
h-lines of the

transformed index space

Pre-calculating the cost
of any multiple cut
(part of a mapping)

Calculating the cost of
any mapping

Calculating the length cost
of any possible cut

(parallel to binding h-lines)

Finding the mapping with the lower
communication cost

Algorithm 1 Algorithm 4

Algorithm 2

Algorithm 3

Algorithm 3

STEP 1
STEP 2

STEP 3

STEP 4
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Analyzing the Procedure (Part 1/4)

For i1 = 1 to 4 do
   for i2 = 1 to 3 do
     for i3 = 1 to 3 do
       (loop body)
     end i3
   end i2
 end i1

Boundary points in
n-dimensional index space

i1

i2

i3

1
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3
4

1
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3

1
2

3

Find transformed
points and calculate
the convex hull of
them;

from the convex
hull boundaries,
calculate virtual
space's binding h-
lines. i2ï

i3ï

i2ï

i3ï

01

02

03 04

Calculate the binding h-
lines of the transformed

index space

Algorithm 1

Determining possible
cut directions
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Analyzing the Procedure (Part 2/4)

Implemented by function cutArea():

i2ï

i3ï

01

02

03

04

05

06

Processor Grid

� = [3, 4]

%1 = 3
%2 = 4

p1

p2

p3

p1
p2 p3

Vectors perpendicular to
binding h-lines

cutArea(3, p1, p2, p3, 1, �3, �3, %1)

cutArea(3, p1, p2, p3, 2, �3, �3, %1)

Calculate the length cost of
any possible cut

(parallel to binding h-lines)

Algorithm 4

cutArea(i, p1, p2, …, pb, k, �i, �i, �j)
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Analyzing the Procedure (Part 3a/4)

A. Evaluate depCosti, which is the overall dependence vector density along direction of
binding h-line pair i.

B. Call several times cutArea() function with properly specified parameters:

¾ for all pairs of binding h-lines (1)

¾ for all combinations of processor-grid arrangement (2)

i2ï

i3ï

01

02

03

04

05

06

Processor Grid

� = [3, 4]

%1 = 3
%2 = 4

p1
p2 p3

Vectors perpendicular to
binding h-lines

cutArea(3, p1, p2, p3, 1, �3, �3, %1)

cutArea(3, p1, p2, p3, 2, �3, �3, %1)

mcCost3,1 = depCost3 × { cutArea(3, p1, p2, p3, 1, �3, �3, %1) + cutArea(3, p1, p2, p3, 2, �3, �3, %1)}

cutArea(1, p1, p2, p3, 1, �1, �1, %2)

cutArea(1, p1, p2, p3, 2, �1, �1, %2)

cutArea(1, p1, p2, p3, 3, �1, �1, %2)

mcCost1,2 = depCost1 × { cutArea(1, p1, p2, p3, 1, �1, �1, %2) +
                                         cutArea(1, p1, p2, p3, 2, �1, �1, %2) +
                                         cutArea(1, p1, p2, p3, 3, �1, �1, %2)}

Pre-calculate the cost of
any multiple cut

(part of a mapping)

Algorithm 2

What we do in this step

We computes multiple-cut cost
for every multiple-cut possible
(by lines parallel to binding h-lines)
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Analyzing the Procedure (Part 3b/4)

��������	
��

Cutting lines: a. parallel to binding h-line pairs 3 (lines �5 and �6) and 1 (lines �1 and �2) and
b. using three processors along first pair (grid 1st dimension) and four processors along second pair.
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p2 p3

Vectors perpendicular to
binding h-lines

cutArea(3, p1, p2, p3, 1, �3, �3, %1)

cutArea(3, p1, p2, p3, 2, �3, �3, %1)

cutArea(1, p1, p2, p3, 3, �1, �1, %2)

cutArea(1, p1, p2, p3, 2, �1, �1, %2)

cutArea(1, p1, p2, p3, 1, �1, �1, %2)

Processor Grid

� = [3, 4]

%1 = 3
%2 = 4

Pre-calculate the cost of
any multiple cut

(part of a mapping)

Algorithm 2
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Analyzing the Procedure (Part 3c/4)

��������	
���

Cutting lines: a. parallel to binding h-line pairs 3 (lines �5 and �6) and 1 (lines �1 and �2) and
b. using four processors along first pair (grid 2nd dimension) and three processors along second pair.
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i2ï

i3ï
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04

05

06 p1
p2 p3

Vectors perpendicular to
binding h-lines

cutArea(3, p1, p2, p3, 1, �3, �3, %2)

cutArea(3, p1, p2, p3, 2, �3, �3, %2)

cutArea(1, p1, p2, p3, 2, �1, �1, %1)

cutArea(1, p1, p2, p3, 1, �1, �1, %1)

cutArea(3, p1, p2, p3, 3, �3, �3, %2)

Processor Grid

� = [3, 4]

%1 = 3
%2 = 4

90°

Pre-calculate the cost of
any multiple cut

(part of a mapping)

Algorithm 2
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Analyzing the Procedure (Part 4/4)

For any valid mapping, find the mapping cost, by summing all multiple-cut costs
that comprise the mapping and keep track of the lower cost.

01

i2ï

i3ï

02

03

04

05

06

cutArea(3, p1, p2, p3, 1, �3, �3, %2)

cutArea(3, p1, p2, p3, 2, �3, �3, %2)

cutArea(3, p1, p2, p3, 3, �3, �3, %2)

cutArea(1, p1, p2, p3, 1, �1, �1, %1)

cutArea(1, p1, p2, p3, 2, �1, �1, %1)

i2ï

i3ï

01

02

03

04

05

06

cutArea(3, p1, p2, p3, 1, �3, �3, %1)

cutArea(3, p1, p2, p3, 2, �3, �3, %1)

cutArea(1, p1, p2, p3, 3, �1, �1, %2)

cutArea(1, p1, p2, p3, 2, �1, �1, %2)

cutArea(1, p1, p2, p3, 1, �1, �1, %2)

Find the mapping with the
lower communication cost

Calculate the cost of
any mapping

Algorithm 3

and

cost = mcCost3,1 + mcCost1,2

cost = depCost3 × { cutArea(3, …, 1, …, �1) + cutArea(3, …, 2, …, �1)} +
           depCost1 × { cutArea(1, …, 1, …, �2) + cutArea(1, …, 2, …, �2) +
                                cutArea(1, …, 3, …, �2)}

Mapping #2

cost = mcCost3,2 + mcCost1,1

cost = depCost3 × { cutArea(3, …, 1, …, �2) + cutArea(3, …, 2, …, �2) +
                               cutArea(3, …, 3, …, �2)} +
          depCost1 × { cutArea(1, …, 1, …, �1) + cutArea(1, …, 2, …, �1)}

Mapping #1
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Inductive Definition of h-length

Algorithm 5

Polygon triangulation to calculate its area

For n = 3, use Euclidean distance
For n > 3:
¾ exclude one point u arbitrarily
¾ use the same algorithm to calculate the h-length l� of the h-line segment that is defined by the remaining n-1 points, in

an h-space of dimension n-2
¾ find the projection u��of u on the h-plane defined by the remaining n-1 points
¾ calculate the Euclidean distance d between u and u���the result is the product of l and d.
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An Example

For this problem, optimal transformation methods for systolic arrays produce matrices:

T1 = 

















110

011

111

, T2 = 

















010

011

111

, T3 = 

















010

110

111

, T4 = 

















100

010

111

These matrices result in systolic arrays of 42, 24, 12 and 12 cells respectively.

 j3ï

 j2ï

P3,1

P3,2 P2,3

P2,2

P2,1

P1,3

P1,2

 j3ï

 j2ï

for i1 = 1 to 6 do
  for i2 = 1 to 4 do
    for i3 = 1 to 3 do
      a(i1,i2,i3) = a(i1,i2-1,i3) + a(i1-1,i2,i3) + a(i1,i2,i3-1)
    end i3
  end i2
end i1
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Summarization

a FOR loop

for i1 = 1 to 4 do
  for i2 = 1 to 3 do
    for i3 = 1 to 3 do
      (loop body)
    end i3
  end i2
end i1

i2ï

i3ï d3ï(0,1)

d1ï(1,0)

d2ï(2,1)

i1

i2

i3

1
2

3
4

1

2

3

1
2

3

d3(0,0,1)

d1(1,0,0)

d2(1,1,1)

01

i2ï

i3ï

02

03

04

05

06

The method
presented:

finds the lower
cost mapping for a

given processor
grid, using cuts

that are parallel to
virtual space
boundaries
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Future Work

� Intra-processor scheduling
Mapping that different points correspond to the same time instance and same processor.

How they are executed?
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C

B
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