
A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES

A SYSTOLIC APPROACH
TO

LOOP PARTITIONING AND MAPPING
INTO

FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES

Ioannis Drositis, Nektarios Koziris, George Papakonstantinou and Panayotis Tsanakas

National Technical University of Athens
Department of Electrical and Computer Engineering

Division of Computer Science

Computing Systems Laboratory
http://www.cslab.ece.ntua.gr

Section I - Presentation Overview

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 2/20

� Loop Partitioning and Mapping - The Systolic Approach

� Some Terminology

� Communication Cost between Clusters

� The Main Procedure at a Glance

� Analyzing the Main Procedure

� Inductive Definition of h-length

� An Example

� Summarization

� Future Work

Presentation Overview

Section II - Partitioning and Mapping: The Systolic Approach

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 3/20

Loop Partitioning and Mapping (the systolic approach)

Example loop:

 for i1 = 1 to 4 do
 for i2 = 1 to 3 do
 for i3 = 1 to 3 do
 (loop body)
 end i3
 end i2
 end i1

Through a linear transformation T[n×n]:

T =

 Π

S
, where �[1×n] and S[(n-1)×n],

we obtain the array of virtual cells needed to compute the
above (initial) index space.
In other words:

(i2�, i3�)T = S·(i1, i2, i3) T

i1

i2

i3

1
2

3
4

1

2

3

1
2

3

d3(0,0,1)

d1(1,0,0)

d2(1,1,1)

i2ï

i3ï d3ï(0,1)

d1ï(1,0)

d2ï(2,1)

What needed to be done now: cutting the virtual space into clusters and assign each cluster to a different processor

Section II - Partitioning and Mapping: The Systolic Approach

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 4/20

The Partitioning Method

i2ï

i3ï

A B

C D

1 2

3 4

Processor Grid
P1 P2

P3 P4

i2ï

i3ï

A B

C D

1 2

3 4

P1 P2

P3 P4

P1 P2

P3 P4

t=1 t=2

P1 P2

P3 P4

t=3

P1 P2

P3 P4

t=4

i2ï

i3ï

A B

C D

1 2

3 4

P1 P2

P3 P4

P1 P2

P3 P4

t=1 t=2

P1 P2

P3 P4

t=3

P1 P2

P3 P4

t=4

Locally Parallel Globally Sequencial (LPGS)
where

cardinality of clusters = number of processors

Globally Parallel Locally Sequencial (GPLS)
where

number of clusters = number of processors

Section II - Partitioning and Mapping: The Systolic Approach

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 5/20

Cutting the Virtual Index Space: The consequences…

Available Processors: 3 → the Virtual (transformed) Space needs to be cut into 3 parts

FIRST ATTEMPT

Two horizontal lines, parallel to horizontal boundary

SECOND ATTEMPT

--
Two lines, parallel to side boundary

i2ï

i3ï d3ï(0,1)

d1ï(1,0)

d2ï(2,1)

Processor 3

Processor 2

Processor 1

Cut Line 2

Cut Line 1

i2ï

i3ï d3ï(0,1)

d1ï(1,0)

d2ï(2,1)

P3
P2

P1

Cut Line 2

Cut Line 1

Result statistics:
¾ Communication cost = 8 + 8 = 16
¾ Processor utilization:

 Processor 1: 5 points
 Processor 2: 10 points
 Processor 3: 5 points

Result statistics:
¾ Communication cost = 10 + 10 = 20
¾ Processor utilization:

 Processor 1: 8 points
 Processor 2: 8 points
 Processor 3: 4 points

� Difference in communication cost as well as in processor utilization

Section III - Some Terminology

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 6/20

The h-terminology (Part 1/2)

¾ h-space: the n-dimensional space that corresponds
to loop's indices (and depth)

For n = 3, a 3-dimensional (index) space is
presented

 i1

i2

i3

¾ h-plane: a linear subspace of (n-1)-dimension
 (a plane in the 3-dimensional space)

For n = 3, two 2-dimensional h-planes are presented
here, the one perpendicular to the other

 i1

i2

i3

'h-' stands for n-dimensional

Section III - Some Terminology

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 7/20

The h-terminology (Part 2/2)

¾ h-line: a linear subspace of (n-2)-dimension
 (a line in the 3-dimensional space)

For n = 3, three 1-dimensional h-lines are presented,
each one perpendicular to other two

i1

i2

i3

¾ h-mesh: a mesh (of processors usually) in the (n-1)-
dimensional space

 (an array of cells connected in a mesh topology)

For n = 3, a 3-dimensional mesh (3×2×3) of
processors is presented

 i1

i2

i3

'h-' stands for n-dimensional

Section IV - Cuts & Communication Cost between Clusters

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 8/20

Communication Costs between Clusters (Introduction)

CUT

cost of a cut = { number of transformed dependence vectors that
 traverse the cut's h-line }
 = { density of dependence vectors } × { length of cut }

MAPPING

cost of a mapping = � { cost values of its individual cuts }

i2ï

i3ï d3ï

d1ï

d2ï

Cluster 3

Cluster 2

Cluster 1

Cut Line 2

Cut Line 1

So:

 cost of a single cut = { length of the cut } × { overall density (of all dependence vectors)
 at the direction that is perpendicular to the cut }
or:

cost of a single cut = { length of the cut } × � { density of each dependence vector on the specified direction }

Section IV - Cuts & Communication Cost between Clusters

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 9/20

Communication Cost between Clusters (continuing…)

COST OF A SINGLE CUT

cost of a single cut = { length of the cut } × � { density of each dependence vector on the specified direction }

∑
=

′⋅
⋅=

m

i

ilc
1

 :cut single a ofcost
p

dp

where:
• m is the number of distinct dependence vectors, p is the vector that is perpendicular to the cut,

• id ′ is a single transformed dependence vector, u is the Euclidean norm of vector u ,

• l is the h-length of the segment of the h-line that corresponds to the cut and is within the bounds of the transformed h-
space.

COST OF A MAPPING

cost of a mapping = { sum of costs of all cuts that comprise the mapping }

{ } ∑ ∑∑

 ′⋅

⋅==
=k

m

i

i
kl

cut every for 1cuts allfor

 cut single a ofcost mapping a ofcost
p

dp

Section V - Main Procedure

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 10/20

The Procedure at a Glance

Calculating the binding
h-lines of the

transformed index space

Pre-calculating the cost
of any multiple cut
(part of a mapping)

Calculating the cost of
any mapping

Calculating the length cost
of any possible cut

(parallel to binding h-lines)

Finding the mapping with the lower
communication cost

Algorithm 1 Algorithm 4

Algorithm 2

Algorithm 3

Algorithm 3

STEP 1
STEP 2

STEP 3

STEP 4

Section V - Main Procedure

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 11/20

Analyzing the Procedure (Part 1/4)

For i1 = 1 to 4 do
 for i2 = 1 to 3 do
 for i3 = 1 to 3 do
 (loop body)
 end i3
 end i2
 end i1

Boundary points in
n-dimensional index space

i1

i2

i3

1
2

3
4

1

2

3

1
2

3

Find transformed
points and calculate
the convex hull of
them;

from the convex
hull boundaries,
calculate virtual
space's binding h-
lines. i2ï

i3ï

i2ï

i3ï

01

02

03 04

Calculate the binding h-
lines of the transformed

index space

Algorithm 1

Determining possible
cut directions

Section V - Main Procedure

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 12/20

Analyzing the Procedure (Part 2/4)

Implemented by function cutArea():

i2ï

i3ï

01

02

03

04

05

06

Processor Grid

� = [3, 4]

%1 = 3
%2 = 4

p1

p2

p3

p1
p2 p3

Vectors perpendicular to
binding h-lines

cutArea(3, p1, p2, p3, 1, �3, �3, %1)

cutArea(3, p1, p2, p3, 2, �3, �3, %1)

Calculate the length cost of
any possible cut

(parallel to binding h-lines)

Algorithm 4

cutArea(i, p1, p2, …, pb, k, �i, �i, �j)

Section V - Main Procedure

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 13/20

Analyzing the Procedure (Part 3a/4)

A. Evaluate depCosti, which is the overall dependence vector density along direction of
binding h-line pair i.

B. Call several times cutArea() function with properly specified parameters:

¾ for all pairs of binding h-lines (1)

¾ for all combinations of processor-grid arrangement (2)

i2ï

i3ï

01

02

03

04

05

06

Processor Grid

� = [3, 4]

%1 = 3
%2 = 4

p1
p2 p3

Vectors perpendicular to
binding h-lines

cutArea(3, p1, p2, p3, 1, �3, �3, %1)

cutArea(3, p1, p2, p3, 2, �3, �3, %1)

mcCost3,1 = depCost3 × { cutArea(3, p1, p2, p3, 1, �3, �3, %1) + cutArea(3, p1, p2, p3, 2, �3, �3, %1)}

cutArea(1, p1, p2, p3, 1, �1, �1, %2)

cutArea(1, p1, p2, p3, 2, �1, �1, %2)

cutArea(1, p1, p2, p3, 3, �1, �1, %2)

mcCost1,2 = depCost1 × { cutArea(1, p1, p2, p3, 1, �1, �1, %2) +
 cutArea(1, p1, p2, p3, 2, �1, �1, %2) +
 cutArea(1, p1, p2, p3, 3, �1, �1, %2)}

Pre-calculate the cost of
any multiple cut

(part of a mapping)

Algorithm 2

What we do in this step

We computes multiple-cut cost
for every multiple-cut possible
(by lines parallel to binding h-lines)

Section V - Main Procedure

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 14/20

Analyzing the Procedure (Part 3b/4)

��������	
��

Cutting lines: a. parallel to binding h-line pairs 3 (lines �5 and �6) and 1 (lines �1 and �2) and
b. using three processors along first pair (grid 1st dimension) and four processors along second pair.

i2ï

i3ï

01

02

03

04

05

06

p1
p2 p3

Vectors perpendicular to
binding h-lines

cutArea(3, p1, p2, p3, 1, �3, �3, %1)

cutArea(3, p1, p2, p3, 2, �3, �3, %1)

cutArea(1, p1, p2, p3, 3, �1, �1, %2)

cutArea(1, p1, p2, p3, 2, �1, �1, %2)

cutArea(1, p1, p2, p3, 1, �1, �1, %2)

Processor Grid

� = [3, 4]

%1 = 3
%2 = 4

Pre-calculate the cost of
any multiple cut

(part of a mapping)

Algorithm 2

Section V - Main Procedure

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 15/20

Analyzing the Procedure (Part 3c/4)

��������	
���

Cutting lines: a. parallel to binding h-line pairs 3 (lines �5 and �6) and 1 (lines �1 and �2) and
b. using four processors along first pair (grid 2nd dimension) and three processors along second pair.

01

i2ï

i3ï

02

03

04

05

06 p1
p2 p3

Vectors perpendicular to
binding h-lines

cutArea(3, p1, p2, p3, 1, �3, �3, %2)

cutArea(3, p1, p2, p3, 2, �3, �3, %2)

cutArea(1, p1, p2, p3, 2, �1, �1, %1)

cutArea(1, p1, p2, p3, 1, �1, �1, %1)

cutArea(3, p1, p2, p3, 3, �3, �3, %2)

Processor Grid

� = [3, 4]

%1 = 3
%2 = 4

90°

Pre-calculate the cost of
any multiple cut

(part of a mapping)

Algorithm 2

Section V - Main Procedure

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 16/20

Analyzing the Procedure (Part 4/4)

For any valid mapping, find the mapping cost, by summing all multiple-cut costs
that comprise the mapping and keep track of the lower cost.

01

i2ï

i3ï

02

03

04

05

06

cutArea(3, p1, p2, p3, 1, �3, �3, %2)

cutArea(3, p1, p2, p3, 2, �3, �3, %2)

cutArea(3, p1, p2, p3, 3, �3, �3, %2)

cutArea(1, p1, p2, p3, 1, �1, �1, %1)

cutArea(1, p1, p2, p3, 2, �1, �1, %1)

i2ï

i3ï

01

02

03

04

05

06

cutArea(3, p1, p2, p3, 1, �3, �3, %1)

cutArea(3, p1, p2, p3, 2, �3, �3, %1)

cutArea(1, p1, p2, p3, 3, �1, �1, %2)

cutArea(1, p1, p2, p3, 2, �1, �1, %2)

cutArea(1, p1, p2, p3, 1, �1, �1, %2)

Find the mapping with the
lower communication cost

Calculate the cost of
any mapping

Algorithm 3

and

cost = mcCost3,1 + mcCost1,2

cost = depCost3 × { cutArea(3, …, 1, …, �1) + cutArea(3, …, 2, …, �1)} +
 depCost1 × { cutArea(1, …, 1, …, �2) + cutArea(1, …, 2, …, �2) +
 cutArea(1, …, 3, …, �2)}

Mapping #2

cost = mcCost3,2 + mcCost1,1

cost = depCost3 × { cutArea(3, …, 1, …, �2) + cutArea(3, …, 2, …, �2) +
 cutArea(3, …, 3, …, �2)} +
 depCost1 × { cutArea(1, …, 1, …, �1) + cutArea(1, …, 2, …, �1)}

Mapping #1

Section VI - A Clarification

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 17/20

Inductive Definition of h-length

Algorithm 5

Polygon triangulation to calculate its area

For n = 3, use Euclidean distance
For n > 3:
¾ exclude one point u arbitrarily
¾ use the same algorithm to calculate the h-length l� of the h-line segment that is defined by the remaining n-1 points, in

an h-space of dimension n-2
¾ find the projection u��of u on the h-plane defined by the remaining n-1 points
¾ calculate the Euclidean distance d between u and u���the result is the product of l and d.

Section VII - An Example

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 18/20

An Example

For this problem, optimal transformation methods for systolic arrays produce matrices:

T1 =

110

011

111

, T2 =

010

011

111

, T3 =

010

110

111

, T4 =

100

010

111

These matrices result in systolic arrays of 42, 24, 12 and 12 cells respectively.

 j3ï

 j2ï

P3,1

P3,2 P2,3

P2,2

P2,1

P1,3

P1,2

 j3ï

 j2ï

for i1 = 1 to 6 do
 for i2 = 1 to 4 do
 for i3 = 1 to 3 do
 a(i1,i2,i3) = a(i1,i2-1,i3) + a(i1-1,i2,i3) + a(i1,i2,i3-1)
 end i3
 end i2
end i1

=

110

011

111

T

=

100

001

010

D

P3,1 P3,2 P3,3

P2,1 P2,2 P2,3

P1,1 P1,2 P1,3

Section VIII - Summarization

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 19/20

Summarization

a FOR loop

for i1 = 1 to 4 do
 for i2 = 1 to 3 do
 for i3 = 1 to 3 do
 (loop body)
 end i3
 end i2
end i1

i2ï

i3ï d3ï(0,1)

d1ï(1,0)

d2ï(2,1)

i1

i2

i3

1
2

3
4

1

2

3

1
2

3

d3(0,0,1)

d1(1,0,0)

d2(1,1,1)

01

i2ï

i3ï

02

03

04

05

06

The method
presented:

finds the lower
cost mapping for a

given processor
grid, using cuts

that are parallel to
virtual space
boundaries

Section VIII - Future Work

A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES 20/20

Future Work

� Intra-processor scheduling
Mapping that different points correspond to the same time instance and same processor.

How they are executed?

A

C

B

D

E

F

d'4

d'0

d'1

d'2

d'3

c0 c1

c2

c3

4

5

6

1

7

2

3

G H

I

J

��

