
Online Querying of Concept Hierarchies in P2P Systems

Katerina Doka, Athanasia Asiki, Dimitrios Tsoumakos and Nectarios Koziris

Computing Systems Laboratory
School of Electrical and Computer Engineering

National Technical University of Athens
{katerina, nasia, dtsouma, nkoziris}@cslab.ece.ntua.gr

Abstract. In this paper we describe HIS, a system that enables efficient storage
and querying of data organized into concept hierarchies and dispersed over a net-
work. Our scheme utilizes an adaptive algorithm that automatically adjusts the level
of indexing according to the granularity of the incoming queries, without assuming
any prior knowledge of the query workload. Efficient roll-up and drill-down opera-
tions increase the exact-match query ratio by shifting to the most favorable hierar-
chy level. Combined with soft-state indices created after query misses, our system
achieves maximization of performance by minimizing query flooding. Extensive
experimental evaluations show that, on top of the advantages that a distributed
storage offers, our method answers the large majority of incoming queries without
flooding the network and at the same time it manages to preserve the hierarchical
nature of data. It shows remarkable performance especially for skewed workloads,
which are frequently documented in the majority of Internet-scale applications.
These characteristics are maintained even after sudden shifts in the workload.

1 Introduction

As the volume of produced data increases, so do the requirements for efficient processing
in the various applications. Data warehouses, for example, host immense volumes of
historical data, providing tools for their aggregation and management at different levels
of granularity. Data are usually viewed in the form of multidimensional arrays (or data
cubes [1]), which represent the basic abstraction in data-warehousing. Data cubes are
characterized by their dimensions, which represent the notions that are important to an
organization for managing its data (e.g., time, location, item, etc) and the facts, which
are the numerical quantities to be analyzed (e.g., sales, profit, etc). Data cubes allow for
efficient summarization of data by reducing the dimensions in the viewed data. However,
data can be presented in an even more fine-grained manner through the use of concept
hierarchies.

A concept hierarchy (or taxonomy) defines a sequence of mappings from more gen-
eral to lower-level concepts. For example, Figure 1 shows a simple hierarchy for the
location concept, where Address < ZipNo < City < Country and one for
time where a partial order is defined. Concept hierarchies are important because they
allow the structuring of information into categories, thus enabling its search and reuse.
Specifically, users may view a given cube at different levels of a dimension hierarchy:
With the roll-up operation we climb up to a more summarized level of the hierarchy,

Week

Day

Year

(b)

Quarter

Month

Country

City

ZipNo

Address

(a)

Fig. 1. A concept hierarchy for di-
mension (a) Location (b) Product.

Table 1. Sample data for our motivating scenario.

Location Measures
Country City Zip Address Sales
Greece Athens 16674 13 Promitheos st. 1,500
Greece Athens 15341 40 Terpsitheas st. 9,900
Greece Athens 16674 14 Ioanninon st. 2,450
Italy Milan 20100 6 Modenna st. 12,100
Greece Patras 26222 16 Tsamadou st. 1,990

while a drill-down defines the opposite operation (i.e., navigating to levels of the hierar-
chy with increased detail).

There has been significant effort in combining the advantages of a distributed and
resilient solution such as P2P with the performance of storing large volumes of data in
database systems. Peer-Database systems (e.g. [2–4]) represent a new trend in which
peers maintain parts of a central or fully independent database and communicate with
each other in a distributed, fault-tolerant manner. Nevertheless, there has been little effort
in designing applications to store and query hierarchical data through a P2P system.
Specifically, P2P databases that rely on DHT functionality are unable to directly support
queries on dimension hierarchies.

In this paper we describe the Hierarchical Indexing System (HIS), a DHT-based sys-
tem that enables efficient storage and querying over dimensions characterized by specific
hierarchies. HIS nodes actively monitor the granularity of posed queries in order to ad-
just the indexing level to the most beneficial one. Combined with soft-state indices which
are dynamically created after query misses, our system manages to minimize the num-
ber of flooding operations necessary to provide exact answers. Furthermore, HIS does
not invalidate the semantics of the stored hierarchies and allows for distributed knowl-
edge mining. To our knowledge, this is the first attempt towards the support of concept
hierarchies in DHTs.

The rest of the paper is organized as follows: Section 2 describes the problem and
gives a preview of the proposed solution. In section 3 our method is thoroughly presented,
while section 4 analyzes important aspects of our system, such as parameter selection
and optimization. Our system is evaluated through experimental results in section 5. A
brief overview of related literature follows in section 6 and finally the paper concludes in
section 7.

2 Motivation and Problem Description

As a motivating scenario, let us consider the computational center of a supermarket
chain that holds records of sales. Such historical data are aggregated (usually off-line)
and queried for discovering interesting trends/associations. Instead of a centralized data
warehouse, the management prefers a horizontal partitioning of the database (according

to some metric, e.g., geographically) so that they can perform on-line queries on the mul-
tiple dimensions. Moreover, it would be very important if simple mining operations (such
as roll-up and drill-down) could be performed, as opposed to more complex queries that
instead have to be processed off-line. Current work offers a variety of systems which can
be used to distribute and query this information. DHTs offer a bandwidth-efficient, dis-
tributed substrate that robustly stores data and routes queries to a large number of nodes.
Nevertheless, these schemes cannot be used to maintain the semantics of the hierarchy
and efficiently retrieve views of the data at different granularities.

To see this, let us assume that the company’s database contains a location dimension
that relates to the suppliers’ addresses. This dimension is organized along the hierarchy
depicted in Figure 1(a). Table 1 shows some sample data relative to this dimension, with
Sales being the fact of interest. In a plain DHT system, one would have to choose a
level of the suggested hierarchy in order to hash all tuples to be inserted to the system.
Assuming the tuples are hashed according to the city attribute, there will be a node
responsible for tuples containing the value Athens, one for Patras, etc. This structure can
be very effective when answering queries referring to the chosen attribute level, whereas
queries concerning other levels of the hierarchy demand global processing.

The solution of multiple insertion of each tuple by hashing every hierarchy value
is not efficient: As the number of levels increase, so does the redundancy of data and
the storage sacrificed for this purpose. While exact-match queries would be answered
without global processing, this scheme fails to encapsulate the hierarchy relationships:
One cannot answer simple queries, such as “Which country is Patras part of ” or “Which
zip-code does ‘15341’ belong to”.

Our work intends to provide an indexing mechanism to facilitate storing and querying
hierarchical data in DHT systems. HIS is an adaptive and bandwidth-efficient solution to
this problem: Peers initially index at a default (pivot) level, but they internally store the
inserted tuples in a hierarchy-preserving manner. Query misses are followed by soft-state
pointer creations so that future queries can be served without re-flooding the network.
Moreover, peers maintain local statistics which are checked in order to decide if a global
re-indexing (to a lower or higher level of the hierarchy) is necessary. If the ratio of queries
for country exceeds a threshold (assuming the pivot level is city), data would be re-
indexed according to that level so that most requests would be directly answered.

It has been widely observed that most Internet-scale applications, including P2P ones,
exhibit highly skewed workloads (e.g., [5–8], etc). HIS indexes popular levels for exact
matches and uses indices to answer the less popular requests adapting to the incoming
workload as a whole. Our extensive simulations show that our system effectively adapts
the level of granularity of the indexing according to user requests, without prior knowl-
edge of the query workloads. HIS achieves a high ratio of exact-match queries in a variety
of workloads, even when these change dynamically with time. We show that our scheme
is particularly efficient with highly skewed distributions (for both data and load), which
are frequently documented in the majority of applications.

Pivot Level

Greece

Athens

16674

Promitheos

Greece Athens 16674 Promitheos st.

(a)

15341

Greece

Athens

16674

Promitheos Terpsitheas

Greece Athens 16674 Promitheos st.
Greece Athens 15341 Terpsitheas st.

Pivot Level

(b)

Promitheos

Greece Athens 16674 Promitheos st.
Greece Athens 15341 Terpsitheas st.
Greece Athens 16674 Ioanninon st.

Athens

Greece

16674 15341

Terpsitheas

Pivot Level

Ioanninon

(c)

Fig. 2. Insertion of first (a), second (b) and third (c) tuple, hashed upon the city level, and creation
of the tree structure in the node responsible for value ‘Athens’.

3 The Hierarchical Indexing System

HIS is a fully dynamic, self-adaptive protocol that can be applied over a P2P overlay
in order to provide efficient mechanisms for storing, indexing and querying hierarchical
data. Our goals are twofold: Efficient querying and preservation of the hierarchy seman-
tics.

First, we address the efficiency of hierarchical data search. Our system should be
able to provide with answers as efficiently as possible at various hierarchy levels of the
data queried. Even though DHTs bind the number of query hops to the logarithm of the
size of the overlay, they are unable to directly support queries on dimension hierarchies
since they perform exact match lookups. Any other case would require message and
time-consuming query flooding over the whole network.

Second, we intend to provide a hierarchy-aware system that will preserve useful
hierarchy-specific information. Hash-based systems discard such information that ex-
poses relationships between items. Hashing either on a single or on multiple levels of
the hierarchy, a naive data insertion would fail to preserve the associations between the
stored keys.

3.1 Data Insertion

The insertion of data items (by data item we refer to a tuple of the database) is performed
as follows: Upon creation of the database, a level of the hierarchy, the pivot level, is
globally selected. The ID of each tuple to be inserted is the hashed value of its pivot
level. The DHT then assigns each data item to the node with ID numerically closest to
that of the data item. For tuples inserted at a later stage, nodes can be informed of the
global pivot level from one of their neighbors in the overlay.

Inserted data are stored in the form of trees that preserves their hierarchical nature.
As a consequence, each distinct value of the pivot level corresponds to a tree that reveals
part of the hierarchy. Let us assume the hierarchy described in Figure 1(a) with city
as the globally defined pivot level. The first tuple to be inserted is assigned an ID that
derives from applying our hash over the value ‘Athens’ and forms a plain list (Figure
2(a)). As data items with the same ID keep arriving at this node, different values at levels
lower in the hierarchy than the pivot level create branches, thus forming a tree structure.
In Figure 2(b), a tuple with new zipNo/address values induces the creation of a new
branch, while in Figure 2(c) the tree forks at the address level.

Greece

Athens

16674

Patras
15341

Milan

Italy
Greece Athens 16674
Greece Athens 15341

...

Greece Patras 26222
...

Italy Milan 20100
...

Fig. 3. Example of soft-state index creation.

3.2 Data Lookup and Soft-State Indexing

Queries concerning the pivot level are exact match queries and can be answered within
O(logN) steps. Queries on any of the other levels cannot be answered unless flooded
across the DHT. In order to facilitate this class of queries, we introduce soft-state indices
to our proposed structure. These indices are created on demand, as soon as a query for
non-pivot level data is answered. After the answers from the corresponding nodes are
received through overlay flooding, the query initiator hashes the value of the requested
key and sends the IDs of the nodes that answered the query to the node responsible for
that key. In case of another query referring to the same value, the time and bandwidth
consuming flooding is avoided and the response can be provided quickly and efficiently,
within logN+C hops, C being the number of nodes the index points to.

The created indices are soft-state, in order to minimize the redundant information.
This means that they expire after a predefined period of time (Time-to-Live or TTL), un-
less a new query for that specific value is initiated, in which case, the index is renewed.
This mechanism ensures that changes in the system (e.g., data location, node unavail-
abilities, etc) will not result in stale indices, affecting its performance. While memory
becomes a cheaper commodity by the day, the plain size of data discourages an “infinite”
memory allocation for indices. Therefore, after the number of indices has reached a limit
Imax, the creation of a new index results in the deletion of the oldest one. Calibrating
Imax for performance without increasing it uncontrollably entails knowledge of our data
(e.g., how skewed each hierarchy is, etc). The Lookup algorithm of HIS is presented in
Algorithm 1.

Let us assume the same hierarchy as before, with city as the pivot level. When
querying for the zip code with value ‘16674’, we discover that no such key exists in the
DHT. Flooding is performed and the node ‘Athens’ answers with the corresponding tuple.
The initiator, which now knows the IDs of the nodes that answered the query, forwards
them to the node responsible for the value ‘16674’ which now has an index pointing to
the node ‘Athens’.

The exact same procedure takes place when the query concerns a value that lies higher
in the hierarchy than the pivot level. Both these cases are shown pictorially in Figure 3,
where the black dots represent nodes that store the actual data, whereas nodes holding
pointers are depicted in grey.

Algorithm 1 HIS Lookup Algorithm
Require: q: the query to be resolved
1: r: remote node
2: Kr,exact : set of keys stored by remote node, Kr,ind : set of keys indexed by remote node
3: IDq← hash(q)
4: DHT route(LookupMessage(IDq))
5: local processing by r
6: if IDq /∈ Kr,exact then
7: check indices list Kr,ind
8: if IDq /∈ Kr,ind then
9: no exact match found

10: flood(q)
11: local processing by r
12: answers returned by nodes having the corresponding tuples
13: DHT route(IndexMessage(IDq → nodes that answered))
14: Receiver node builds index pointing to the nodes that answered and adds IDq to Kr,ind
15: else
16: local processing, tuples returned
17: end if
18: else
19: tuples returned
20: end if

3.3 Reindexing operation

HIS is adaptive to the query distributions, supporting dynamic changes in the pivot level.
By shifting to a higher or lower level (rollup and drilldown respectively), we aim to
increase the ratio of exact-match queries, reduce floodings and boost performance.

If the number of queries initiated by a node regarding levels different than the pivot
level exceeds the number of queries for the pivot level by some ratio, this node considers
the possibility of a new partitioning. The mechanism functions as follows: Each node
stores the number of queries (termed popularity and denoted p�i) it initiates for each
level of the L-level hierarchy �i, 0 ≤ i ≤ L− 1 within a restricted time-frame W. This
time-frame should be properly selected to perceive variations of query distributions and,
at the same time, stay immune to instant surges in load. By making use of these statistics,
the most popular level �max is determined. If p�max is more than threshold% of the total
number of queries within this time frame, the node is positive to the potential of adopting
another pivot level. This step is used as an indication of an imbalance that should be
further investigated.

If this is the case, the reindexing enters its second phase, in which the local intuition
must be confirmed (or not) using global statistics. The node whose local information
indicates a possible shift of the pivot level sends a SendStats message to all system nodes.
The initiator performs the same calculation using the global statistics this time, with the
most popular level being �max. If �max is not threshold% or more of the total number of
queries, no action is taken. In the opposite case, when

Algorithm 2 HIS Reindexing Algorithm
1: �p: current pivot level
2: p�i : popularity of level �i
3: Llocal : �0 < �1 < .. . < �max levels ranked according to local popularity

4: if p�max/
L−1

∑
i=0

p�i ≥threshold then

5: flood(SendStatsMessage) and collect global statistics
6: Lglobal : �0 < �1 < .. . < �max levels ranked according to global popularity

7: if p�max/
L−1

∑
i=0

p�i ≥ threshold then

8: determine new pivot level �p new
9: if �p new = �p then

10: no action taken
11: else if �p new higher in the hierarchy than �p then
12: flood(RollupMessage(�p new))
13: �p← �p new
14: deletion of all indices
15: rehashing of tuples
16: else
17: flood(DrilldownMessage(�p new))
18: �p← �p new
19: erasure of all indices
20: rehashing of tuples
21: end if
22: else
23: no action is taken
24: end if
25: else
26: no action is taken
27: end if

p�max/
L−1

∑
i=0

p�i ≥ threshold

then a rollup or drilldown is performed respectively by all nodes, depending on whether
the new pivot level is higher or lower in the hierarchy than the current pivot level. Later
on propose an enhanced mechanism for the new pivot level choice.

The node floods a Rollup or Drilldown message to all nodes of the system, to signal
a shift to the new pivot level. Each node that receives this message traverses its tuples,
finds all the values of the level that will constitute the new reference point and hashes
them one by one, sending the tuples (or the indices to the real location of the data tuples)
to the corresponding nodes. Assuming that the size of the dataset |D| � N2, N being the
size of the network, the preferred method to perform this is to send at most N messages
per node, grouping the tuples by recipient. After the node completes the procedure, it
erases all its data and indices. The algorithm is presented in Algorithm 2.

Back to our example, if the node ‘Athens’ receives a Drilldown message for level
ZipNo, it runs through its tuples and discovers that all values for that level are the ones

depicted in Figure 2(c), namely ‘16674’ and ‘15341’. The values are hashed and the
corresponding nodes are now responsible for the tuples containing these values.

3.4 Locking

In order to ensure the correctness of the answers during the rollup or drilldown proce-
dure and to avoid simultaneous rollups or drilldowns by multiple nodes, we introduce a
locking mechanism. After a node finally decides to perform reindexing according to the
global statistics, it sends a Lock message to all nodes of the system and then proceeds
to the rollup or drilldown. Once a node receives the Lock message, it changes its state
to LOCKED and maintains it for a predefined period of time (related to the size of the
system), which we assume adequate to cover the time needed for the whole system to
finish the rollup or drilldown procedure and to reach a stable state. During this time, all
queries are answered through flooding and no other operation is allowed.

4 Discussion

In this section we will briefly discuss some important aspects of HIS that relate to its
parameters as well as optimization issues.

Memory requirements. Memory requirements for a HIS node include the space for
the level statistics plus the storage required for the soft state indices: Specifically, each
node requires O(L)+ O(Imax) = O(Imax) memory, assuming that, in general, L < 10. As
shown in the experimental section, the overhead may range from small to negligible,
depending on the choice of Imax.

Parameter selection. A careful choice of the TTL, W and Imax parameters plays an
important role in the performance of the system. A small TTL degrades the success ratio
of the search mechanism, unnecessarily invalidating indices. Assuming the rate at which
participating peers delete their data or disconnect is small (a reasonable assumption for
our motivating application), a large value for TTL will not create a stale image that fails
to reflect the infrequent changes.

The window parameter W represents the number of previous statistics that each node
stores and uses in order to decide a pivot level change. A large value for W will fail
to perceive load variations, whereas a very small value will possibly lead to frequent
erroneous or conflicting reindexing decisions. In order to estimate its value, we set W=
O(1/λ), i.e., we connect the size of the window with the query interarrival time. The
more frequent the requests, the smaller W can be and vice-versa. Finally, regarding the
total amount of memory dedicated per node, this is dominated, as we mentioned before,
by Imax and more specifically by the maximum number of non-pivot keys Kmax that a
node is responsible for (thus holds indices pointing to the relevant nodes). Assuming a
(very optimistic) value of N = 1K nodes for our application and that IDs and keys need
20 bytes (as outputs of SHA1 hash function), a node that will be responsible for 1K
different keys will need at most 20KB of memory while for 10K keys a node will need
at most 200KB of memory (certainly affordable by most modern desktop PCs).

Tuple insertion – Updates. Tuple updates are normally performed through an up-
date of the tuple’s measures at the corresponding node. One open issue relates to the

insertion of new tuples in the system. While hashing according to the current pivot level
and storing the new item is trivial, there may exist indices that need to be updated since
the new tuple must be included in the result set of various queries. As an example, con-
sider an inserted tuple that documents sales in a new Greek zip code. An existing index
for ‘Greece’ should now include the ID of the node responsible for the new tuple. Since
the creation of an index may be followed by one or more index deletions at the creating
node (due to space constraints), the inserting node cannot know of the existence or not
of an index relative to the new tuple a priori. This can be resolved in a variety of ways,
according to the level of consistency that we require from our system. We distinguish the
following two cases:
• Weak consistency – allow for some incomplete answers: Nodes periodically append
the inserted tuples to a globally known location. Index-holding peers can then, asyn-
chronously, retrieve this directory and update the required indices.
• Strong consistency – require complete answers: After each insertion, the node per-
forms n lookups to identify the existence of all possible indices. Each node that holds a
corresponding combination will update its value.

Enhanced pivot selection algorithm. Rollup or drilldown decisions have a large
impact on our system in terms of bandwidth utilization and query performance: The
reindexing mechanism not only requires global message exchange but also invalidates
the so far created indices. Spikes in load can often produce such operations. Therefore,
frequent index reorganizations should be avoided, yet beneficial reindexing should not be
prevented. Besides the ranking of levels according to their popularity, the overall query
distribution should be taken into account as well for the new pivot level choice, since it is
possible that the system profits by choosing some less popular level than �max. Observing
that the least costly reindexing process is the one that shifts the pivot level higher in the
hierarchy, we propose an enhanced mechanism for choosing a new pivot level: After the
collection of the global statistics, if the most popular level exceeds the threshold and the
difference between that and some less popular levels is less than diff, all these levels are
considered candidate levels. In that case, if one of the candidate levels is the pivot level,
the system should make no change, otherwise, it should choose the level that is highest
in the hierarchy from the candidate set.

Balancing Reindexing costs. Reindexing is a costly procedure, as it requires net-
work flooding for the collection of statistics and the consecutive re-insertion of tuples.
The latter dominates the complexity of the reindexing process which requires Ω(N2)
messages. Therefore, it is important to ensure that our gains from reducing query flood-
ings outweigh this cost.

Minimizing Reindexing operations. In order to minimize the number of occasions
where global statistics are collected due to nodes interested in suboptimal levels or ma-
licious users, we introduce the intervaln parameter for each node n, which defines the
minimum interval between two consequent checks that can be initiated by n and coin-
cides with the frequency of n checking its statistics. Its initial value Ts is the same for all
nodes.

As mentioned earlier, it is possible that the globally optimal pivot level is contra-
dictory to the interest of a single node. In such cases, local node statistics will be con-
tinuously dictating data repartitioning, refuted by the global statistics. In order to dis-

Table 2. Percentage of queries directed to the top
10% of the data values for various levelDist.

Skewed towards
levelDist/valueDist → �0 → �3

0/0 52.3 52.3
0.5/0 63.3 40.6
1.0/0 73.4 31.1
1.5/0 82.5 24.5
2.0/0 88.8 22.6

Table 3. Percentage of queries directed to the top
10% of the data values for various valueDist.

Skewed towards
levelDist/valueDist → �3

1.0/0 31.1
1.0/0.5 40.5
1.0/1.0 78.3
1.0/1.5 98.9
1.0/2.0 100.0

courage consecutive reindexing attempts from the same node, we introduce a back-off
mechanism, which multiplicatively increases the intervaln when the processing of lo-
cal and global statistics conclude in different results or in a no-change decision (i.e.,
intervaln = 2Ts,4Ts, etc). Each time a SendStats message is flooded over the network,
intervaln is reset to the maximum between the current value and Ts, regardless of the
outcome (whether a reindexing is decided or not).

5 Experimental Results

We now present a comprehensive simulation-based evaluation of HIS. Our performance
results are based on a heavily modified version of the FreePastry simulator [9], although
any DHT implementation could be used as a substrate. We assume a network size of 512
nodes, 100 of which are randomly chosen to initiate queries at any given time. Experi-
ments conducted with up to 1K nodes showed little qualitative difference.

In our simulations, we use synthetically generated data. Our data is a tree with each
value having at most one parent. We are using a uniform distribution per level, meaning
that each distinct value of �i has a constant number of children in �i+1. By default, our
data comprise of 10000 tuples, organized in a 4-level hierarchy (see Figure 1(a)) with one
numerical fact (sales). The number of distinct values per level are |�0 = 500|, |�1 =
1000|, |�2 = 5000| and |�3 = 10000|. The level of insertion is, by default, �1 (city),
unless stated otherwise.

For our query workloads, we consider a two-stage approach: we first identify which
level our query will target according to the levelDist distribution; the requested value is
then chosen from that level following the valueDist distribution. In our experiments, we
use the Zipfian (pi ∼ 1/iθ) distribution for both levelDist and valueDist. In the rest of
this section, we use the notation a/b to identify workloads, where a and b correspond to
the values of θ for levelDist and valueDist respectively. Tables 2 and 3 quantify the level
of skew for commonly used workloads in our simulations, when the skew is directed
towards the first (�0) or the last hierarchy level (�3).

Generated queries arrive at an average rate of 1 query
sec , in a 50000 sec total simula-

tion time. We present results for queries on a single dimension with multiple levels of
hierarchy. Our default threshold value is set to 30%, which is a large enough value to
avoid very frequent reindexing attempts. Simulations with different values of threshold
around this default show small qualitative difference. The default value of W, which con-
trols how quickly the system can adapt to changes, is set to 500 seconds. Finally, for our
experiments we assume a practically infinite value of TTL (indices never expire).

0 100 200 300 400 500 600 700 800 900 1000
Imax

20

40

60

80

100

Pr
ec

is
io

n
(%

)

HIS 1.0/0
HIS 0.5/0
HIS 0/0

Fig. 4. Precision over variable values of the Imax
parameter.

1.5/0 1.5/0.5 1.5/1.0 1.5/1.5 1.5/2.0
Query Workload

20

40

60

80

100

Pr
ec

is
io

n
(%

)

HIS
HIS(N/R)
Naive

Fig. 5. Precision for varying valueDist (skew
towards �3).

In this section, we intend to demonstrate the performance and adaptability of HIS
under various conditions. Our goal is to show that HIS is highly efficient under a variety
of data and load distributions and can quickly adapt to sudden changes in skew without
any modification to the default parameters. Specifically, we measure the percentage of
queries which are answered without flooding (precision). We compare HIS with the naive
protocol (referred to as Naive), where precision equals the ratio of queries concerning the
insertion level, and a special case of HIS, where only the soft-state indices are utilized
and no reindexing occurs (referred to as HIS(N/R)).

The effect of the Imax parameter
The value of the Imax parameter is very important as it specifies the maximum number

of different non-pivot values that a node can index, and thus defines, as described earlier,
the memory requirements of each node. The effect of the Imax parameter on the system’s
precision is examined in this set of experiments, with its value varying from 0 to 1000 for
three workloads, 0/0, 0.5/0 and 1.0/0, directed towards �3. Results are depicted in Figure
4.

As expected, the system performance improves as Imax increases for all workload
skews. As the number of indices increases, more queries can be answered using this
mechanism. There exists a point Ithres, beyond which no significant improvement is ob-
served. The Ithres value as well as the documented slope strongly depend on the data and
query workloads. When no reindexing occurs (0/0 workload), the Ithres value is larger
since HIS solely relies on indices to improve its performance, plus more distinct values
are requested. In the two skewed workloads, HIS tracks the optimal pivot level and shifts
to it, hence less space dedicated to indices is necessary to achieve high performance. Fi-
nally, it is worth noticing that the more biased the workload, the lower the performance
gains. This is due to the fact that a greater θ value results in more duplicate queries, thus
in fewer distinct keys that need to be indexed. The dominant performance mechanism in
these cases is the indexing level.

For the rest of the experiments we assume that each node stores up to Imax = 1k
indices, a large enough value which ensures that for the data and query workload of our
experiments the majority of the created indices will remain in the system. This heavily
favors the N/R method, since HIS discards all indices each time a reindexing occurs.
With this value, each node needs to dedicate approximately 20KB of main memory for
HIS (excluding the data of course, which may or may not be physically located at the
DHT).

0/0 0.5/0 1.0/0 1.5/0 2.0/0
Query Workload

20

40

60

80

100

Pr
ec

is
io

n
(%

)

HIS
HIS(N/R)
Naive

Fig. 6. Precision for varying levelDist (skew
towards �3).

0/0 0.5/0 1.0/0 1.5/0 2.0/0
Query Workload

0

50

100

150

200

250

300

350

400

450

#M
es

sa
ge

s/
qu

er
y

HIS
HIS(N/R)
Naive

Fig. 7. Average number of messages required to
answer a query (skew towards �3).

0/0 0.5/0 1.0/0 1.5/0 2.0/0
Query Workload

20

40

60

80

100

Pr
ec

is
io

n
(%

)

HIS
HIS(N/R)
Naive

Fig. 8. Precision for varying levelDist (skew
towards �0).

0/0 0.5/0 1.0/0 1.5/0 2.0/0
Query Workload

0

50

100

150

200

250

300

350

400

#M
es

sa
ge

s/
qu

er
y

HIS
HIS(N/R)
Naive

Fig. 9. Average number of messages required to
answer a query (skew towards �0).

Performance with varying query distributions
In this set of simulations, we first vary the levelDist distribution, keeping θ = 0 for val-
ueDist (Figures 6-9). Afterwards, we vary the valueDist distribution, maintaining θ = 1.5
for levelDist (Figure 5). In both cases we alter the direction of skew towards �0 or �3, us-
ing the default parameters otherwise.

In Figure 6, data are skewed towards the lowest level �3. As θ increases for levelDist ,
the performance of HIS improves: Reindexing is performed sooner and the exact matches
due to the chosen pivot level increase. It reaches very high levels of precision (above
90%), while even with uniform requests (0/0) our method can directly answer close to
80% of all queries. HIS directly answers three to ten times more queries than the static
method (i.e., Naive). In such cases, where valueDist is uniform and the most popular level
consists of a large number of distinct values, indices alone do not suffice to serve queries,
therefore HIS(N/R) demonstrates noticeably worse performance than HIS. However, as θ
increases, HIS(N/R) starts to catch up with HIS due to query redundancy.

By increasing θ for valueDist (Figure 5), we observe remarkably high precision rates
(close to 100%), because both the ratio of popular queries and the density of queries for
certain tuples increase. The higher the θ, the more HIS(N/R) approaches HIS. This is
due to the fact that indices can serve more queries since the number of distinct requests
decreases.

0 10000 20000 30000 40000 50000
Time (sec)

20

40

60

80

100

Pr
ec

is
io

n
(%

)
2.0/2.0
1.5/1.5
1.0/1.0
0.5/0.5

Fig. 10. Precision over time for various workloads when a sudden shift in skew occurs at tc =
25000sec.

Figure 8 shows results where our workload favors �0. Again, we notice a similar trend
in performance as the values for θ increase. Nevertheless, HIS is slightly less effective
than HIS(N/R) (less than 5%), with this difference diminishing as θ increases. This is due
to the limited number of distinct values of �0 which facilitates the maintenance of indices,
while for HIS all created indices are erased during the rollup procedure. However, since
we assume the same Imax parameter for both methods, HIS naturally outperforms its
competition in the steady state, as it can increase its performance with time.

Figures 7 and 9 depict the number of messages that need to be exchanged in the sys-
tem in order to answer a query, indicating a measure of bandwidth consumption. The
numbers illustrated include the request as well as response messages for each query.
While both methods are clearly more bandwidth efficient than the Naive method, HIS
results in significantly less messages per query than N/R, as queries answered through in-
dices, although preferable than floodings, require more messages than the ones answered
directly (exact-matches). The difference is more noticeable in the workloads favoring
�3 (Figure 7). The explanation is similar to that for the precision ratio: A skew towards
the lowest level produces more distinct queries, thus more floodings, which strongly af-
fect the communication overhead. HIS avoids that by shifting to the most popular level
inducing some communication cost. Besides the creation and maintenance of indices,
which is common in both HIS and N/R, HIS needs some extra messages in order to col-
lect statistics and perform reindexing (referred to as control messages). However, in all
experiments the documented ratio of control messages over the total number is less than
5%. Nevertheless, our gains in precision and reduction in floodings greatly outperform
this small overhead.

Performance in dynamic environments
In the next experiment, we measure the performance and adaptivity of HIS in dynamic

environments, namely sudden changes in the workload. We tailor our query distribution
so that a sudden change occurs in the middle of the simulation (tc = 25000sec): From a
skewed workload towards �0 we shift to a skewed load towards �3. We show the results
for various levels of skew in Figure 10.

Our results show that, in all cases, HIS quickly increases its precision due to the com-
bination of automatic reindexing and soft-state indices. While floodings increase after
tc (hence the decline in precision), it quickly manages to recover and regain its perfor-

50/500/5000 200/1000/5000 1250/2500/5000
Data Distribution

20

40

60

80

100

Pr
ec

is
io

n
(%

)

HIS
HIS(N/R)

Fig. 11. Precision over various data distri-
butions.

2 4 6 8
#levels

70

80

90

100

Pr
ec

is
io

n
(%

)

HIS 1.5/1.5
HIS (N/R) 1.5/1.5
HIS 0.5/0.5
HIS (N/R) 0.5/0.5

Fig. 12. Precision over variable number of hier-
archy levels.

mance characteristics. The rate at which these events occur depends on the amount of
skew: In the 2.0/2.0 and 1.5/1.5 cases, we show remarkable increase in precision (start-
ing from the plain data insertion at t = 0sec), fast recovery after the change in skew and
convergence to almost 100% precision. For less skewed distributions (0.5/0.5,1.0/1.0),
the results record a slight deterioration in the rate of convergence as well as a decline in
precision from the change in skew: The decline ranges from less than 10% in the 2.0/2.0
case to about 35% in the worst-case. Once again, we observe that HIS performs best in
skewed workloads, but its performance in the steady state is invariably high, regardless
of the workload.

Performance with varying data distributions
In this experiment, we show the impact of the distribution of data on the performance of
our method. We vary the number of children a value can have in our data-trees: We shift
from data with relatively balanced populations of the hierarchy levels to very skewed
ones, e.g., |�n| � |�i|, i < n. We generate three datasets for a three-level hierarchy, with a
different number of distinct values for each level except the bottom one (i.e., we maintain
a constant number of tuples, |�2| = 5000). We annotate each dataset using the notation
|�0|/|�1|/|�2|. The queries follow a zipfian 1.5/0 distribution that changes midpoint, in
a manner similar to the previous experiment: Half of the simulation time we favor �0,
while the other half we favor �2. The results, for a simulation period of 10000 sec, are
depicted in Figure 11.

Our method shows clear advantages over an indices-only scheme for all datasets.
First, we note that HIS increases its performance as the dataset becomes more skewed
towards the lower levels. This is due to the fact that, reindexing towards these levels
enables HIS to answer almost all queries directly as the small number of distinct values
for the remaining ones can be answered through indices. As the datasets become more
“balanced”, the creation and maintenance of indices fails to accommodate all queries,
thus reducing the precision of both methods. Second, we note that HIS(N/R) is more
heavily affected from the data distribution since its performance depends exclusively on
the soft-state indexing, while our method shows a decline of less than 15%.

Testing HIS with different number of hierarchy levels
In this set of simulations we plan to identify the possible performance variations caused
by datasets with different number of hierarchy levels. By altering the cardinality of each
level, we create equal-size data and query-sets with the same levelDist and valueDist

-10 -5 0 5 10 15
Difference between level popularities (%)

40

60

80

100

Pr
ec

is
io

n
(%

)

diff 10%
diff 5%
diff 0%

Fig. 13. Precision over various popularity dif-
ferences for different values of diff.

-10 -5 0 5 10 15
Difference between level popularities (%)

100K

200K

300K

400K

500K

600K

#C
on

tr
ol

 M
es

sa
ge

s

diff = 10%
diff = 5%
diff = 0%

Fig. 14. Number of control messages ex-
changed for different values of diff.

values. Figure 12 depicts the results for 2, 4, 6 and 8 levels for two different workloads,
skewed towards �3: 0.5/0.5 and 1.5/1.5.

As the number of levels increases linearly, the popular levels’ request rates decrease,
thus reducing the number of exact match queries for the level HIS chooses. Nevertheless,
the performance degradation for HIS is negligible in both cases, because it relies on both
the reindexing mechanism as well as soft-state indices. In the N/R version and for less
skewed workloads, precision is more heavily affected by an increase in the number of lev-
els, as the number of queries that cannot be accomodated by indices increases. For more
skewed workloads, both schemes show very high precision. Nevertheless, variations in
the value of θ have a much smaller effect on HIS compared to the N/R version.

Pivot level selection and the effect of the diff parameter
This experiment intends to prove the effectiveness of the enhanced pivot selection algo-

rithm in terms of performance as well as bandwidth consumption. We produce workloads
where the initial pivot level has a constant average popularity of 35%. Initially, the pivot
level is the most popular one (�max=pivot), with the second most popular level (�3 in our
case) falling short by 10%. The popularity of �3 gradually increases, reaching and finally
exceeding that of the pivot by up to 15%. We measure the precision as well as the num-
ber of control messages, which include messages used for the creation and maintenance
of indices as well as those exchanged to collect statistics and perform reindexing. The
experiment is conducted with variable values of the diff parameter (0%, 5% and 10%).

As depicted in Figure 13, the performance noticeably degrades as the average pop-
ularity of �3 approaches that of the pivot levels for small values of diff. When diff =0,
meaning that the system always adopts �max as the new pivot level, we observe a max-
imum degradation of 30% for the case where p�3 	 p�pivot . This is due to the fact that
minor temporal differences in popularities lead to frequent global reindexings (up to 50
such operations for the specific case). These consecutive reorganizations decrease the
system’s precision, also causing invalidation of the so far created indices and further de-
creasing the exact match rate. The communication overhead is heavily affected as well,
as illustrated in Figure 14, which depicts the number of control messages exchanged
throughout the simulation. When diff is small, besides an increase in messages enforc-
ing rollups or drilldowns, the system suffers the increase in SendStats messages. When
diff =0, equal level popularities result in the exchange of up to 60 times more control
messages. The more concrete the difference between the two most popular levels, the

0 10000 20000 30000 40000 50000 60000 70000
Time (sec)

20

40

60

80

100

Pr
ec

is
io

n
(%

)

D1
D2
D3

D1 D2 D3
0

20

40

60

80

100

Pr
ec

is
io

n
(%

)

HiPPIS
HiPPIS(N/R)

Fig. 15. Performance of HIS for the three APB datasets.

Table 4. Number of distinct val-
ues and number of tuples for the
three APB-generated data and
query sets.

|Product| # tuples #queries
D1 9K 12M 12K
D2 45K 1500M 37K
D3 90K 12300M 75K

more confident the system is of the optimal pivot level and thereby the less unnecessary
reindexings it performs.

As diff increases, the system’s precision is less affected by similar average popu-
larities of the two most popular levels. In the case of diff =10%, we notice that even
with similar popularities, the system demonstrates no degradation. On the contrary, it
maintains a steadily increasing precision, performing reindexing only when necessary.
Furthermore, it demonstrates a significantly lower communication overhead (an order of
magnitude fewer control messages).

Reindexing and flooding costs
As aforementioned, the cost of reindexing is non-negligible. Hence, it is very important
that the system performs the minimum required reindexing rounds. HIS proves extremely
efficient to that end, carrying out one reindexing process per direction of skew: This
translates to a single reindexing for the workloads with no change and two for the work-
loads that change the direction of skew. Moreover, we calculated that one HIS reindexing
equals 13 queries answered by flooding. Since we only perform the necessary reindex-
ing(s) and less than 5 SendStats requests are produced per simulation, our method is
substantially more bandwidth efficient.

APB Benchmark Datasets
We also test the performance of HIS using some realistic data and query sets gener-

ated by the APB-1 benchmark [10]. APB-1 creates a database structure with multiple
dimensions and generates a set of business operations reflecting basic functionality of
OLAP applications. For our experiments, we focus on the product dimension, a steep
hierarchy of 6 levels (the bottom level contains 90% of the members). We generate three
datasets with increasing values for |product| and the produced data-cube (see Table 4).
Results are depicted in Figure 15, with the enclosed graph showing the average precision.

In all cases, HIS achieves very high precisions (near 100%) with small (< 10%) fluc-
tuations. In all three simulations, the precision reaches 80% in about 1/3 of the queries
and reaches its peak after half the queries have taken place. It is noteworthy that this
performance is registered for extremely voluminous datasets (in the order of billions of
tuples), with a very small number of queries (compared to the size of the dataset) and
using the same Imax parameter as with our default datasets (despite that the distinct val-
ues are 20 times as many). Another observation relates to the rate of convergence: The

smaller the dataset, the faster the convergence rate. This is again due to the fact that we
use a limited amount of memory for the indices, therefore a big increase in the number
of distinct values queried (this is natural as the dataset increases), cannot accommodate
all requests.

6 Related Work

There has been significant work in the area of databases over P2P networks. PIER [3]
proposes a distributed architecture for relational databases supporting operators such as
join and aggregation of stored tuples. A DHT-based overlay is used for query routing. The
PIER platform is also used along with a Gnutella overlay in [11] for common file-sharing.
The Chatty Web [12] considers P2P systems that share (semi)-structured information but
deals with the degradation, in terms of syntax and semantics, of a query propagated along
a network path. PeerDB [2] features relational data sharing without schema knowledge.
Query matching and rewriting is based on keywords provided by the users. GridVine [13],
and pSearch [14] are based on structured P2P overlays. GridVine hashes and indexes
RDF data and schemas, and pSearch represents documents as well as queries as semantic
vectors. All these approaches offer significant and efficient solutions to the problem of
sharing structured and heterogeneous data over P2P networks. Nevertheless, they do not
deal with the special case of hierarchical data.

An interesting method for representing hierarchical data is presented in [15]. The
method is applied on unstructured networks containing XML documents in order to favor
the routing of path queries. Each XML document is represented by an unordered label
tree and bloom filters are used to summarize it.

In [16], hierarchies are exploited to enable faster computation of the possible views
and a more compact representation of the data cube. Another approach is the DC-Tree
[17], a fully dynamic index structure for data warehouses modeled as data cubes. In this
approach, the attributes of a dimension are partially ordered with respect to the valid
hierarchy schema for each dimension. DC-tree stores one concept hierarchy per dimen-
sion and assigns an ID to every attribute value of a data record that is inserted. These
approaches are very efficient in answering both point and aggregate queries over various
data granularities but do so in a strictly centralized and controlled environment.

7 Conclusions

In this paper we described HIS, an adaptive technique for storing, indexing and querying
data organized in hierarchical dimensions for DHT overlays. HIS performs a combination
of active reindexing according to the granularity of the incoming queries and soft-state
indexing, achieving both high performance and adaptation to various shifts in workload,
without assuming any prior knowledge of it and with minor communication and compu-
tation overhead. By preserving the nature of the stored tuples, it enables on-line querying
on different granularities of voluminous data with 100% recall.

Our simulations, using a variety of workloads and data distributions, show remark-
able performance in bandwidth efficiency (up to 10 times less query flooding and over
90% precision) compared to a naive DHT insertion scheme. Moreover, it shows very fast

adaptation to dynamic changes in load, especially for skewed ones, which are frequently
documented in the majority of Internet-scale applications. Even with low amounts of
skew, HIS manages to answer the majority of queries within O(logN) steps, by detecting
the most popular level and shifting to it. We also demonstrated that our scheme achieves
high performance for a number of different datasets, when both the number of levels or
the distribution of values within each level vary.

Acknowledgments

This work was partly supported by the European Commission in terms of the GREDIA
FP6 IST Project (FP6-34363).

References
1. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F.,

Pirahesh, H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub-totals. Data Min. Knowl. Discov. 1(1) (1997) 29–53

2. Ooi, B., Shu, Y., Tan, K., Zhou, A.: PeerDB: A P2P-based System for Distributed Data Shar-
ing. In: ICDE. (2003)

3. Huebsch, R., Hellerstein, J., Boon, N.L., Loo, T., Shenker, S., Stoica, I.: Querying the Internet
with PIER. In: VLDB. (2003)

4. Halevy, A., Ives, Z., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The Piazza Peer Data
Management System. In: IEEE Transactions on Knowledge and Data Engineering. (2003)

5. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y., Moon, S.: I tube, you tube, everybody tubes:
analyzing the world’s largest user generated content video system. In: IMC ’07: Proceedings
of the 7th ACM SIGCOMM conference on Internet measurement. (2007)

6. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the gnutella network: Properties of large-scale
peer-to-peer systems and implications for system design. IEEE Internet Computing Journal
6(1) (2002)

7. Sen, S., Wong, J.: Analyzing peer-to-peer traffic across large networks. In: SIGCOMM Inter-
net Measurments Workshop. (2002)

8. Chu, J., Labonte, K., Levine, B.: Availability and locality measurements of peer-to-peer file
systems. In: SPIE. (2002)

9. FreePastry: http://freepastry.rice.edu/freepastry
10. APB-1: OLAP Council APB-1 Benchmark, http://www.olapcouncil.org/research/resrchly.htm
11. Loo, T., Hellerstein, J., Huebsch, R., Shenker, S., Stoica, I.: Enchancing p2p file-sharing with

an internet-scale query processor. In: VLDB. (2004)
12. Aberer, K., Cudre-Mauroux, P., Hauswirth, M.: The Chatty Web: Emergent Semantics

Through Gossiping. In: WWW Conference. (2003)
13. Aberer, K., Cudre-Mauroux, P., Hauswirth, M., Pelt, T.V.: Gridvine:Building internet-scale

semantic overlay networks. In: International Semantic Web Conference. (2004)
14. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-organizing se-

mantic overlay networks. In: SIGCOMM. (2003)
15. Koloniari, G., Pitoura, E.: Content-based routing of path quieries in peer-to-peer systems. In:

EDBT. (2004)
16. Sismanis, Y., Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Hierarchical dwarfs for the

rollup cube. In: DOLAP. (2003)
17. Ester, M., Kohlhammer, J., Kriegel, P.: The dc-tree: A fully dynamic index structure for data

warehouses. In: ICDE. (2000)

