

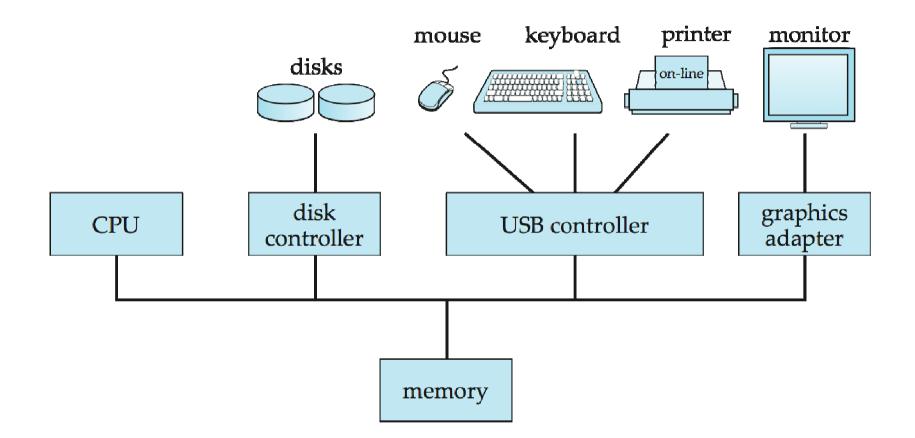
Chapter 17: Database System Architectures

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

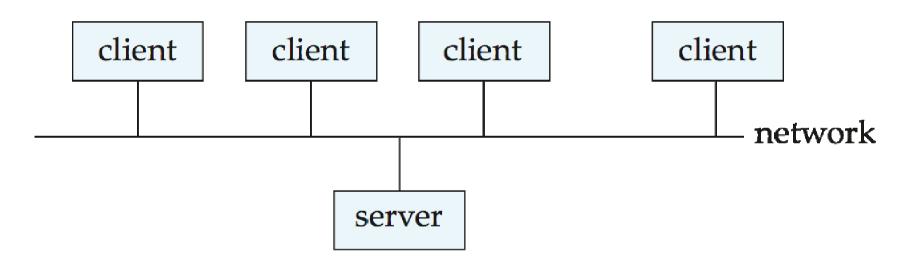
Chapter 17: Database System Architectures

- Centralized and Client-Server Systems
- Server System Architectures
- Parallel Systems
- Distributed Systems
- Network Types

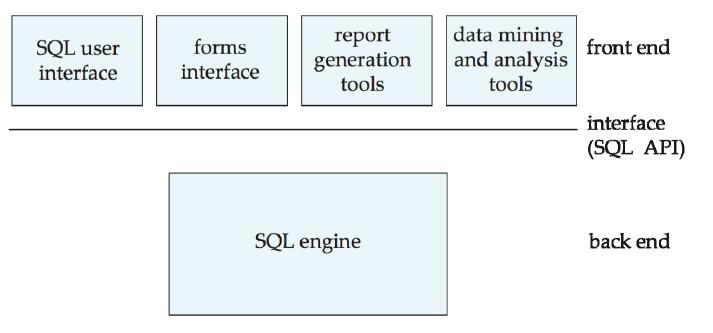


Centralized Systems

- Τρέχουν σε έναν υπολογιστή και δεν αλληλεπιδρούν με άλλα συστήματα
- Γενικής χρήσης υπολογιστικό σύστημα: 1- αρκετές CPUs, ελεγκτές με κοινό bus που παρέχει πρόσβαση σε κοινή μνήμη
- Συστήματα ενός χρήστη (e.g., personal computer or workstation): desk-top unit, single user, usually has only one CPU and one or two hard disks; the OS may support only one user.
- Συστήματα πολλαπλών χρηστών: more disks, more memory, multiple CPUs, and a multi-user OS. Serve a large number of users who are connected to the system vie terminals. Often called *server* systems.


A Centralized Computer System

Client-Server Systems


Server systems satisfy requests generated at *m* client systems, whose general structure is shown below:

Client-Server Systems (Cont.)

- Database functionality can be divided into:
 - Back-end: πρόσβαση σε δομές, υπολογισμός και βελτιστοποίηση ερωτημάτων, έλεγχος ταυτοχρονισμού και αποκατάσταση
 - **Front-end**: εργαλεία όπως φόρμες, *γεννήτριες αναφορών* και GUIs
- Η διασύνδεση μεταξύ front-end και back-end μέσω SQL ή εφαρμογής

Client-Server Systems (Cont.)

- Advantages of replacing mainframes with networks of workstations or personal computers connected to back-end server machines:
 - better functionality for the cost
 - flexibility in locating resources and expanding facilities
 - better user interfaces
 - easier maintenance

Server System Architecture

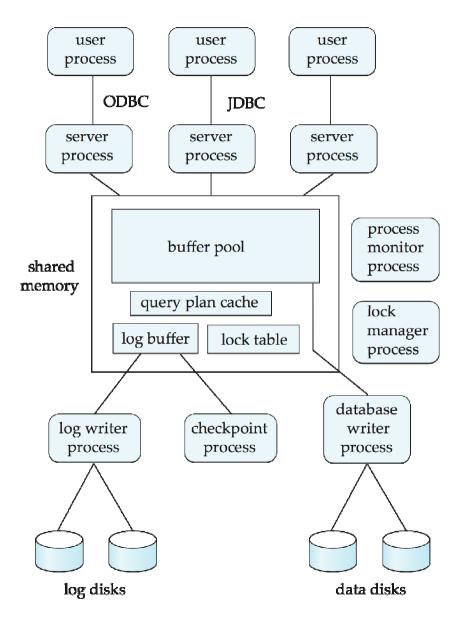
- Server systems can be broadly categorized into two kinds:
 - transaction servers παρέχουν σύνδεση όπου οι πελάτες στέλνουν αιτήματα
 - data servers χρησιμοποιούνται σε object-oriented database systems. Παρέχουν διασύνδεση στο σύστημα αρχείων για δημιουργία, ενημέρωση, αναζήτηση δεδομένων.

Transaction Servers

- Also called query server systems or SQL server systems
 - Clients send requests to the server
 - Transactions are executed at the server
 - Results are shipped back to the client.
- Requests are specified in SQL, and communicated to the server through a *remote procedure call* (RPC) mechanism.
- Transactional RPC allows many RPC calls to form a transaction.
- Open Database Connectivity (ODBC) is a C language application program interface standard from Microsoft for connecting to a server, sending SQL requests, and receiving results.
- JDBC standard is similar to ODBC, for Java

Transaction Server Process Structure

- A typical transaction server consists of multiple processes accessing data in shared memory.
- Server processes
 - These receive user queries (transactions), execute them and send results back
 - Processes may be multithreaded, allowing a single process to execute several user queries concurrently
 - Typically multiple multithreaded server processes
- Lock manager process
 - More on this later
- Database writer process
 - Output modified buffer blocks to disks continually



Transaction Server Processes (Cont.)

- Log writer process
 - Server processes simply add log records to log record buffer
 - Log writer process outputs log records to stable storage.
- Checkpoint process
 - Performs periodic checkpoints
- Process monitor process
 - Monitors other processes, and takes recovery actions if any of the other processes fail
 - E.g., aborting any transactions being executed by a server process and restarting it

Transaction System Processes (Cont.)

Transaction System Processes (Cont.)

- Shared memory contains shared data
 - Buffer pool
 - Lock table
 - Log buffer
 - Cached query plans (reused if same query submitted again)
- All database processes can access shared memory
- To ensure that no two processes are accessing the same data structure at the same time, databases systems implement mutual exclusion using either
 - Operating system semaphores
 - Atomic instructions such as test-and-set
- To avoid overhead of interprocess communication for lock request/grant, each database process operates directly on the lock table
 - instead of sending requests to lock manager process
- Lock manager process still used for deadlock detection

Data Servers

- Used in high-speed LANs, in cases where
 - The clients are comparable in processing power to the server
 - The tasks to be executed are compute intensive.
- Data are shipped to clients where processing is performed, and then shipped results back to the server.
- This architecture requires full back-end functionality at the clients.
- Used in many object-oriented database systems
- Issues:
 - Page-Shipping versus Item-Shipping
 - Locking
 - Data Caching
 - Lock Caching

- Page-shipping versus item-shipping
 - Smaller unit of shipping \Rightarrow more messages
 - Worth **prefetching** related items along with requested item
 - Page shipping can be thought of as a form of prefetching
- Locking
 - Overhead of requesting and getting locks from server is high due to message delays
 - Can grant locks on requested and prefetched items; with page shipping, transaction is granted lock on whole page.
 - Locks on a prefetched item can be P{called back} by the server, and returned by client transaction if the prefetched item has not been used.
 - Locks on the page can be deescalated to locks on items in the page when there are lock conflicts. Locks on unused items can then be returned to server.

Data Servers (Cont.)

Data Caching

- Data can be cached at client even in between transactions
- But check that data is up-to-date before it is used (cache coherency)
- Check can be done when requesting lock on data item
- Lock Caching
 - Locks can be retained by client system even in between transactions
 - Transactions can acquire cached locks locally, without contacting server
 - Server calls back locks from clients when it receives conflicting lock request. Client returns lock once no local transaction is using it.
 - Similar to deescalation, but across transactions.

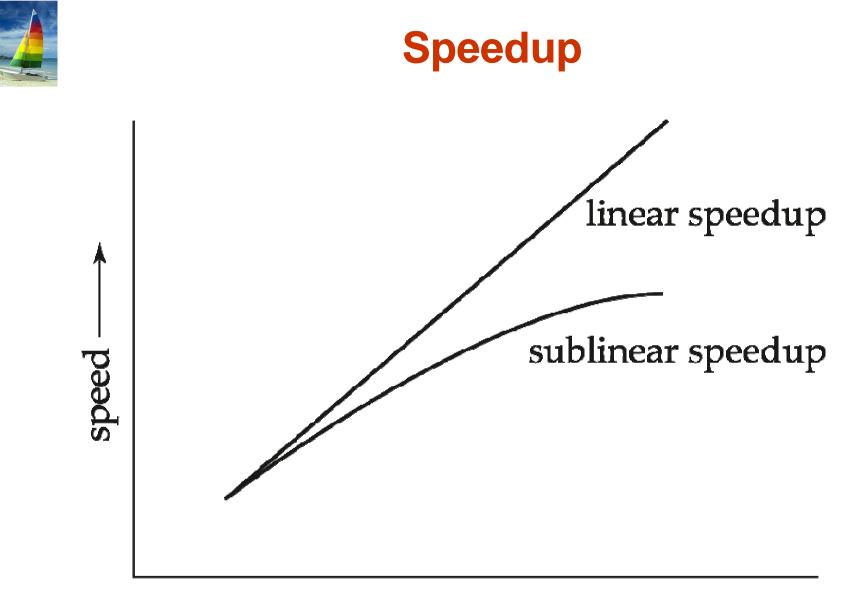
Parallel Systems

- Parallel database systems consist of multiple processors and multiple disks connected by a fast interconnection network.
- A coarse-grain parallel machine consists of a small number of powerful processors
- A massively parallel or fine grain parallel machine utilizes thousands of smaller processors.
- Two main performance measures:
 - **throughput** --- the number of tasks that can be completed in a given time interval
 - **response time** --- the amount of time it takes to complete a single task from the time it is submitted

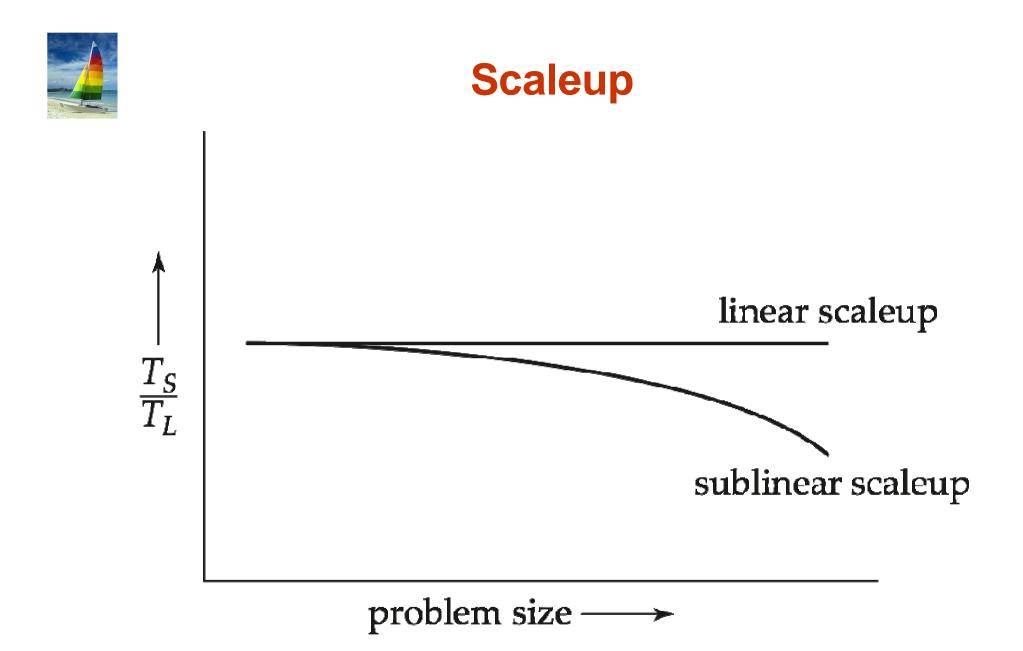
Speed-Up and Scale-Up

- Speedup: a fixed-sized problem executing on a small system is given to a system which is *N*-times larger.
 - Measured by:

speedup = large system elapsed time


small system elapsed time

- Speedup is **linear** if equation equals N.
- **Scaleup**: increase the size of both the problem and the system
 - *N*-times larger system used to perform *N*-times larger job
 - Measured by:


scaleup = small system small problem elapsed time

big system big problem elapsed time

• Scale up is **linear** if equation equals 1.

Batch and Transaction Scaleup

Batch scaleup:

- A single large job; typical of most decision support queries and scientific simulation.
- Use an *N*-times larger computer on *N*-times larger problem.

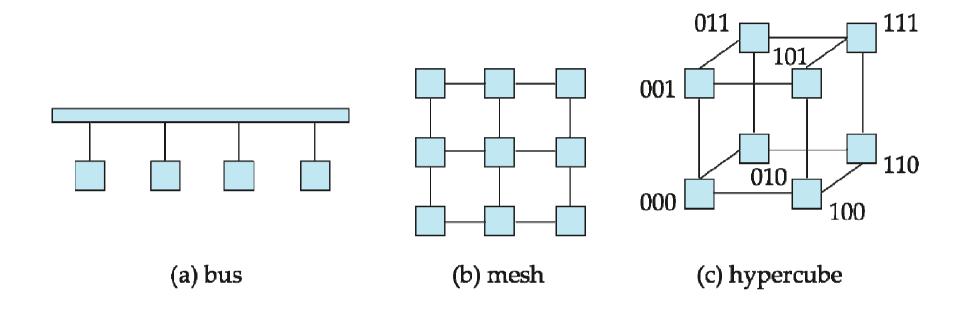
Transaction scaleup:

- Numerous small queries submitted by independent users to a shared database; typical transaction processing and timesharing systems.
- N-times as many users submitting requests (hence, N-times as many requests) to an N-times larger database, on an N-times larger computer.
- Well-suited to parallel execution.

Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:

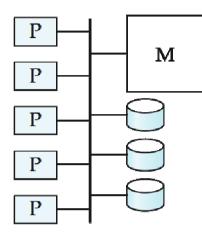
- Startup costs: Cost of starting up multiple processes may dominate computation time, if the degree of parallelism is high.
- Interference: Processes accessing shared resources (e.g., system bus, disks, or locks) compete with each other, thus spending time waiting on other processes, rather than performing useful work.
- Skew: Increasing the degree of parallelism increases the variance in service times of parallely executing tasks. Overall execution time determined by **slowest** of parallely executing tasks.



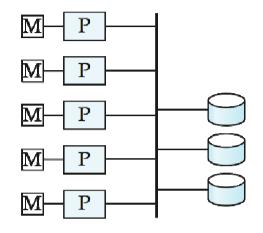
Interconnection Network Architectures

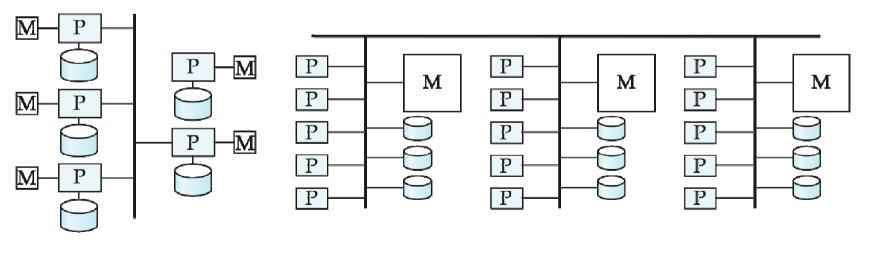
- Bus. System components send data on and receive data from a single communication bus;
 - Does not scale well with increasing parallelism.
- Mesh. Components are arranged as nodes in a grid, and each component is connected to all adjacent components
 - Communication links grow with growing number of components, and so scales better.
 - But may require $2\sqrt{n}$ hops to send message to a node (or \sqrt{n} with wraparound connections at edge of grid).
- Hypercube. Components are numbered in binary; components are connected to one another if their binary representations differ in exactly one bit.
 - n components are connected to log(n) other components and can reach each other via at most log(n) links; reduces communication delays.

Interconnection Architectures



Parallel Database Architectures


- Shared memory -- processors share a common memory
- Shared disk -- processors share a common disk
- Shared nothing -- processors share neither a common memory nor common disk
- Hierarchical -- hybrid of the above architectures


Parallel Database Architectures

(a) shared memory

(b) shared disk

(c) shared nothing

(d) hierarchical

Database System Concepts - 6th Edition

Shared Memory

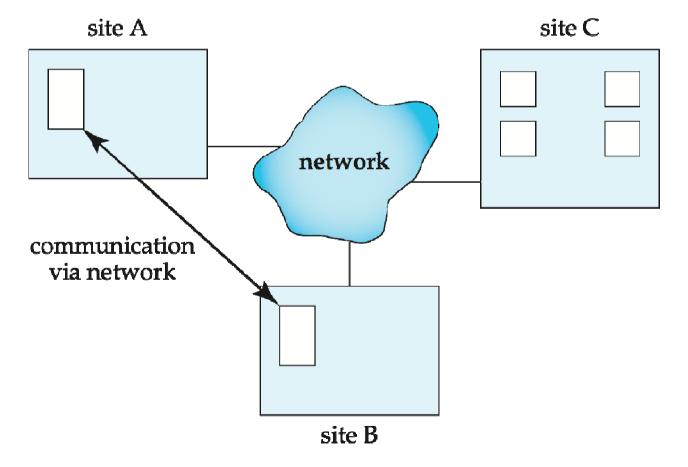
- Processors and disks have access to a common memory, typically via a bus or through an interconnection network.
- Extremely efficient communication between processors data in shared memory can be accessed by any processor without having to move it using software.
- Downside architecture is not scalable beyond 32 or 64 processors since the bus or the interconnection network becomes a bottleneck
- Widely used for lower degrees of parallelism (4 to 8).

Shared Disk

- All processors can directly access all disks via an interconnection network, but the processors have private memories.
 - The memory bus is not a bottleneck
 - Architecture provides a degree of fault-tolerance if a processor fails, the other processors can take over its tasks since the database is resident on disks that are accessible from all processors.
- Examples: IBM Sysplex and DEC clusters (now part of Compaq) running Rdb (now Oracle Rdb) were early commercial users
- Downside: bottleneck now occurs at interconnection to the disk subsystem.
- Shared-disk systems can scale to a somewhat larger number of processors, but communication between processors is slower.

Shared Nothing

- Node consists of a processor, memory, and one or more disks. Processors at one node communicate with another processor at another node using an interconnection network. A node functions as the server for the data on the disk or disks the node owns.
- Examples: Teradata, Tandem, Oracle-n CUBE
- Data accessed from local disks (and local memory accesses) do not pass through interconnection network, thereby minimizing the interference of resource sharing.
- Shared-nothing multiprocessors can be scaled up to thousands of processors without interference.
- Main drawback: cost of communication and non-local disk access; sending data involves software interaction at both ends.


Hierarchical

- Combines characteristics of shared-memory, shared-disk, and sharednothing architectures.
- Top level is a shared-nothing architecture nodes connected by an interconnection network, and do not share disks or memory with each other.
- Each node of the system could be a shared-memory system with a few processors.
- Alternatively, each node could be a shared-disk system, and each of the systems sharing a set of disks could be a shared-memory system.
- Reduce the complexity of programming such systems by distributed virtual-memory architectures
 - Also called **non-uniform memory architecture (NUMA)**

Distributed Systems

- Data spread over multiple machines (also referred to as sites or nodes).
- Network interconnects the machines
- Data shared by users on multiple machines

Distributed Databases

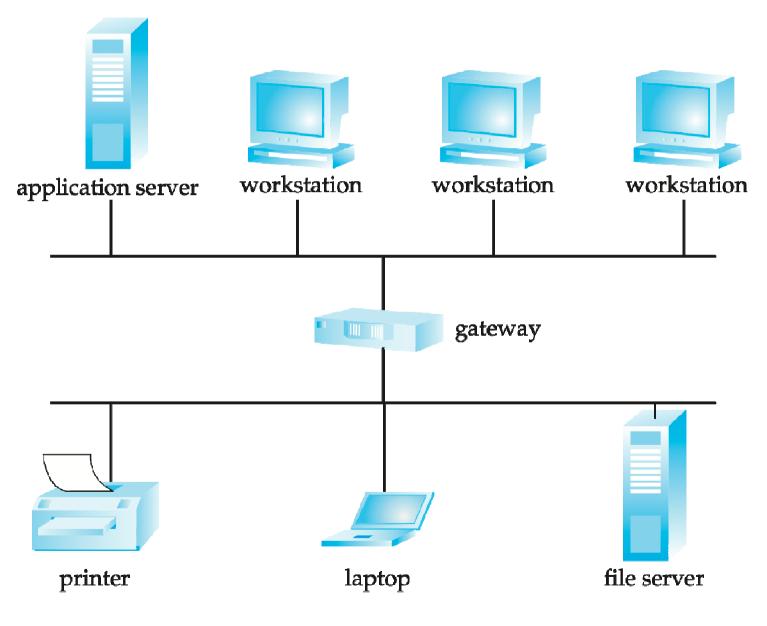
- Homogeneous distributed databases
 - Same software/schema on all sites, data may be partitioned among sites
 - Goal: provide a view of a single database, hiding details of distribution
- Heterogeneous distributed databases
 - Different software/schema on different sites
 - Goal: integrate existing databases to provide useful functionality
- Differentiate between *local* and *global* transactions
 - A local transaction accesses data in the *single* site at which the transaction was initiated.
 - A global transaction either accesses data in a site different from the one at which the transaction was initiated or accesses data in several different sites.

Trade-offs in Distributed Systems

- Sharing data users at one site able to access the data residing at some other sites.
- Autonomy each site is able to retain a degree of control over data stored locally.
- Higher system availability through redundancy data can be replicated at remote sites, and system can function even if a site fails.
- Disadvantage: added complexity required to ensure proper coordination among sites.
 - Software development cost.
 - Greater potential for bugs.
 - Increased processing overhead.

Implementation Issues for Distributed Databases

- Atomicity needed even for transactions that update data at multiple sites
- The two-phase commit protocol (2PC) is used to ensure atomicity
 - Basic idea: each site executes transaction until just before commit, and the leaves final decision to a coordinator
 - Each site must follow decision of coordinator, even if there is a failure while waiting for coordinators decision
- 2PC is not always appropriate: other transaction models based on persistent messaging, and workflows, are also used
- Distributed concurrency control (and deadlock detection) required
- Data items may be replicated to improve data availability
- Details of above in Chapter 22



Network Types

- Local-area networks (LANs) composed of processors that are distributed over small geographical areas, such as a single building or a few adjacent buildings.
- Wide-area networks (WANs) composed of processors distributed over a large geographical area.

Local-area Network

Database System Concepts - 6th Edition

Networks Types (Cont.)

- WANs with continuous connection (e.g., the Internet) are needed for implementing distributed database systems
- Groupware applications such as Lotus notes can work on WANs with discontinuous connection:
 - Data is replicated.
 - Updates are propagated to replicas periodically.
 - Copies of data may be updated independently.
 - Non-serializable executions can thus result. Resolution is application dependent.