
1cslab@ntua 2019-2020

Εικονική Μνήμη &
Μετάφραση Διευθύνσεων

2cslab@ntua 2019-2020

Πηγές/Βιβλιογραφία

• Krste Asanovic, “Address Translation”, CS 152/252 Computer
Architecture and Engineering, EECS Berkeley, 2020
• https://inst.eecs.berkeley.edu/~cs152/sp20/lectures/L08-AddressTranslation.pdf

• https://inst.eecs.berkeley.edu/~cs152/sp20/lectures/L09-VirtualMemory.pdf

• “Computer Architecture: A Quantitative Approach”, J. L.
Hennessy, D. A. Patterson, Morgan Kaufmann Publishers, INC.
6th Edition, 2017.

• “Appendix L: Advanced Concepts on Address Translation”,
Abhishek Bhattacharjee

• www.cs.yale.edu/homes/abhishek/abhishek-appendix-l.pdf

https://inst.eecs.berkeley.edu/~cs152/sp20/lectures/L21-VirtualMachines.pdf
https://inst.eecs.berkeley.edu/~cs152/sp20/lectures/L21-VirtualMachines.pdf
https://inst.eecs.berkeley.edu/~cs152/sp20/lectures/L21-VirtualMachines.pdf

3cslab@ntua 2019-2020

VM features track historical uses
• Bare machine, only physical addresses

– One program owned entire machine

• Batch-style multiprogramming
– Several programs sharing CPU while waiting for I/O
– Base & bound: translation and protection between programs

(supports swapping entire programs but not demand-paged
virtual memory)

– Problem with external fragmentation (holes in memory), needed
occasional memory defragmentation as new jobs arrived

• Time sharing
– More interactive programs, waiting for user. Also, more

jobs/second.
– Motivated move to fixed-size page translation and protection, no

external fragmentation (but now internal fragmentation, wasted
bytes in page)

– Motivated adoption of virtual memory to allow more jobs to
share limited physical memory resources while holding working
set in memory

4cslab@ntua 2019-2020

Virtual Memory Use Today

• Servers/desktops/laptops/smartphones have full demand-
paged virtual memory

– Portability between machines with different memory sizes

– Protection between multiple users or multiple tasks

– Share small physical memory among active tasks

– Simplifies implementation of some OS features

• Most embedded processors and DSPs provide physical
addressing only

– Can’t afford area/speed/power budget for virtual memory support

– Often there is no secondary storage to swap to!

– Programs custom written for particular memory configuration in
product

– Difficult to implement precise or restartable exceptions for exposed
architectures

5cslab@ntua 2019-2020

Modern Virtual Memory Systems
Illusion of a large, private, uniform store

5

Protection & Privacy
several users, each with their private address

space and one or more shared address
spaces

Demand Paging
Provides the ability to run programs larger

than the primary memory

Hides differences in machine configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Secondary
Storage

VA PAmapping

TLB

6cslab@ntua 2019-2020

Paged Memory Systems
Program-generated (virtual or logical) address split into:

Virtual Address
Space Pages for Job 1

Page Table
for Job 1

 Page Table contains physical address of start of each fixed-sized
page in virtual address space

Physical
Memory

Pages

Page Number Offset

0
1
2
3

0
1
2
3

1

0

3

2

 Paging makes it possible to store a large contiguous virtual
memory space using non-contiguous physical memory pages

7cslab@ntua 2019-2020

Private Address Space per User

Virtual Address
Space Pages for Job 1

Page Table
for Job 1 Physical

Memory
Pages

0
1
2
3

0
1
2
3

1

0

1
3
3
3
2

0
0

2

2

1

Operating
System
Pages

Virtual Address
Space Pages for Job 2

Page Table
for Job 2

0
1
2
3

0
1
2
3

Virtual Address
Space Pages for Job 3

Page Table
for Job 3

0
1
2
3

0
1
2
3

8cslab@ntua 2019-2020

Hierarchical Page Table

Level 1
Page Table

Level 2

Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of Current
Page Table

p1

offset

p2

Virtual Address from CPU

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

P
h

ys
ic

al
 M

e
m

o
ry

9cslab@ntua 2019-2020

Address Translation & Protection

Every instruction and data access needs address
translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Exception?

Supervisor/User Mode

Read/Write
Protection

Check

10cslab@ntua 2019-2020

Page-Fault Handler

• When the referenced page is not in DRAM:

– The missing page is located (or created)

– It is brought in from disk, and page table is updated

• Another job may be run on the CPU while the first job waits for the
requested page to be read from disk

– If no free pages are left, a page is swapped out

• Pseudo-LRU replacement policy, implemented in software

• Since it takes a long time to transfer a page (msecs), page faults
are handled completely in software by the OS

– Untranslated addressing mode is essential to allow kernel to access
page tables

10

11cslab@ntua 2019-2020

Translation-Lookaside Buffers (TLB)
Address translation is very expensive!

In a two-level page table, each reference becomes several
memory accesses

Solution: Cache translations in TLB
TLB hit  Single-Cycle Translation

TLB miss  Page-Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

12cslab@ntua 2019-2020

Handling a TLB Miss
• Software (MIPS, Alpha)

– TLB miss causes an exception and the operating system walks the
page tables and reloads TLB. A privileged “untranslated” addressing
mode used for walk.

– Software TLB miss can be very expensive on out-of-order superscalar
processor as requires a flush of pipeline to jump to trap handler.

• Hardware (SPARC v8, x86, PowerPC, RISC-V)

– A memory management unit (MMU) walks the page tables and
reloads the TLB.

– If a missing (data or PT) page is encountered during the TLB reloading,
MMU gives up and signals a Page Fault exception for the original
instruction.

13cslab@ntua 2019-2020

Address Translation: putting it all together

13

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the page is

memory memory
denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?

14cslab@ntua 2019-2020

Address Translation on Modern Chips

• Add Figure 1

15cslab@ntua 2019-2020

Address Translation on Modern Chips

• Separate L1 TLBs

• for instructions and data

• Unified L2 TLBs

• cache translations for instructions and data

• Hardware page table walkers (PTWs)

• handle TLB misses without invoking the OS

• Memory management unit (MMU) caches

• accelerate TLB misses

• Nested TLBs

• Support for running virtual machines

16cslab@ntua 2019-2020

Address Translation on Modern Chips

• Add Figure 2

17cslab@ntua 2019-2020

L1 TLBs – Separate Instruction and
Data TLBs

• Modern superscalar out-of-order pipelines can require several
concurrent instruction and data virtual-to-physical translations
per cycle

• Implementing separate iTLBs and dTLBs reduces the chances of pipeline
hazards due to contention at the TLB from limited port count

• Instructions and data exhibit different locality of reference or
reuse attributes

• Different policies among the TLB resources when supporting
simultaneous multithreading (or hyperthreading) in hardware

• Statically partitioned iTLBs for different simultaneous hardware threads

• Dynamically partitioned dTLBs

18cslab@ntua 2019-2020

L1 TLBs – Support for Different Page Sizes

• L1 TLBs must be fast and energy-efficient

• TLBs reside on the critical L1 datapath of pipelines.

• Need to meet timing constraints, with lookup and miss handling
characteristics that are amenable to speed.

• Hence, L1 TLBs are usually set-associative structures.

• Larger page sizes (commonly employed by most OSes today)
enable greater effective TLB capacity

• A single TLB entry can provide address translation for a larger (e.g., 2MB
or 1GB) part of memory.

• Challenge: Supporting multiple page sizes also complicates the
design of set-associative TLBs.

• Why? Because different page sizes require a different number of page
offset bits and the page size is not known at lookup time

19cslab@ntua 2019-2020

L1 TLBs – Support for Different Page Sizes

20cslab@ntua 2019-2020

• Problem: the page size is unknown at access time

• And page size affects indexing

• Solution: Separate L1 TLBs for different page sizes

• Intel Skylake  separate L1 TLBs for 4KB, 2MB, and 1GB pages

• Translations are inserted into the ”right” TLB on misses

• A translation can be placed in only one of the split L1 TLBs

• On a memory reference, all L1 TLBs are looked up in parallel

• Alternative solution: Use fully-associative L1 TLB

• One hardware structure

• But expensive in terms of area and power

L1 TLBs – Support for Different Page Sizes

21cslab@ntua 2019-2020

L2 TLBs

• Significantly larger than L1 TLBs

• Several important attributes to consider:

• Access time

• Longer access time compared to L1 TLBs due to larger size

• Hit rate

• Need be as high possible to counterbalance the higher
access times of unified L2 TLBs

• Multiple page size support

• Alternative options arise now

• Inclusive, mostly-inclusive, or exclusive designs

• Implementation choices and tradeoffs similar to caches.

22cslab@ntua 2019-2020

L2 TLBs – Support for Different Page Sizes

• Hash-rehashing

• The L2 TLB is first probed (or hashed) assuming a particular page size

• On a miss, the TLB is again probed (or rehashed) using another page size

• This process continues with rehashed lookups for any remaining page
sizes

• Skewing

• Change the notion of set in a TLB

• the ways of a set no longer share the same index bits and each way of a
set uses its own index function

• To support multiple page sizes, a translation maps to a subset of TLB ways
depending not just on its address but also its page size.

23cslab@ntua 2019-2020

L2 TLBs – Support for Different Page Sizes
Hash - rehashing

• Relative simplicity of implementation

• But now the hit time varies

• Improve hit time

• Page size prediction (e.g., using the Program Counter or the memory
instruction format)

• Parallel lookup

• Parallel page table walks

24cslab@ntua 2019-2020

L2 TLBs – Support for Different Page Sizes
Skewing

• Skew-associative TLBs can support multiple page sizes
concurrently without the complications of multi-latency hit
times or slow identification of TLB misses

• Require multiple hash functions, which can be complex to
implement.

• Require additional area from time stamps needed for
replacement policies.

• The more page sizes there are to accommodate, the lower the
effective associativity per page size.

25cslab@ntua 2019-2020

L2 TLBs – Support for Different Page Sizes
Skewing

Conventional indexing Skew indexing

26cslab@ntua 2019-2020

Page Table Walks

• When TLB misses occur, the page table must be searched or
”walked” to locate the desired translation.

• Can be handled either in hardware or software (OS)

• Software managed TLB

• Flexible: Allow the OS to organize and manage page tables in a flexible
manner

• Slow: require pipelines to be context switched and OS code to be invoked
for all TLB misses

• Hardware managed TLB

• High performance

• Overlapping TLB misses with useful work

• Concurrently handling multiple misses

• Reduced flexibility

27cslab@ntua 2019-2020

2D Page Table Walks in Virtualized Execution

• Two-dimensional page table walks for virtualized systems

• First, a guest virtual address must be converted to a guest physical
address.

• This guest physical address must then be converted to a system physical
address.

• Many modern architectures maintain two levels of page tables
to enable this two-step translation process.

• The first one, the guest page table, translates the guest virtual pages to
guest physical pages and is maintained by the guest OS.

• The second one, the nested page table, translates the guest physical
pages to the system physical pages, and is maintained by the hypervisor.

• The 2D page table walk requires more memory references than
in native execution (24 vs 4 memory references in x86-64). For
this reason, address translation performance is particularly
problematic in virtualized environments.

28cslab@ntua 2019-2020

2D Page Table Walks in Virtualized Execution

29cslab@ntua 2019-2020

Memory Management Unit Caches

• Page table walks are lengthy because they require multiple
sequential memory references.

• The leaf level of the page table is cached in the TLB

• The upper levels are cached in the MMU caches.

30cslab@ntua 2019-2020

Translation Contiguity

• The OS allocates adjacent virtual pages to adjacent physical
pages

• Random behavior (intermediate contiguity)

• Explicit support (contiguity beyond page size limit)

• It is then possible to propose hardware that stores groups of
adjacent page table entries in a single TLB entry to reduce miss
rates and increase performance.

• Why not just using larger page size?

• Memory management becomes challenging for the OS

• Memory fragmentation

• Alignment restrictions

31cslab@ntua 2019-2020

Translation Contiguity

• TLB Coalescing

• Direct Segments

• Range Translations

32cslab@ntua 2019-2020

Page-based Translation

Virtual
Memory

VPN0 PFN0

TLB

Physical
Memory

33cslab@ntua 2019-2020

Large Pages

Virtual
Memory

Physical
Memory

[Transparent Huge Pages and libhugetlbfs]

VPN0 PFN0

Large Page TLB

34cslab@ntua 2019-2020

TLB Coalescing

Virtual
Memory

Clustered TLB

[ASPLOS’94, MICRO’12 and HPCA’14]

Physical
Memory

Sub-blocked TLB/CoLT

VPN(0-3) PFN(0-3) BitmapMap

35cslab@ntua 2019-2020

Direct Segments

Virtual
Memory

Direct Segment

(BASE,LIMIT)  OFFSET

BASE LIMIT

OFFSET

[ISCA’13 and MICRO’14]

Physical
Memory

36cslab@ntua 2019-2020

Key Observation

Virtual
Memory

Physical
Memory

37cslab@ntua 2019-2020

Virtual
Memory

1. Large contiguous regions of virtual memory
2. Limited in number: only a few handful

Physical
Memory

Code Heap Stack Shared Lib.

Key Observation

38cslab@ntua 2019-2020

Compact Representation: Range Translation

Virtual
Memory

Physical
Memory

BASE1 LIMIT1

OFFSET1

Range
Translation 1

39cslab@ntua 2019-2020

Redundant Memory Mappings [ISCA’15, TopPicks’16]

Virtual
Memory

Physical
Memory

Range
Translation 1

Range
Translation 2

Range Translation 3

Range
Translation 4

Range
Translation 5

Map most of process’s virtual address space redundantly with
modest number of range translations in addition to page mappings

40cslab@ntua 2019-2020

V47 …………. V12

P47 …………. P12

L1 DTLB

L2 DTLB Range TLB

Page Table WalkerEnhanced Page Table Walker

Redundant Memory Mappings [ISCA’15, TopPicks’16]

41cslab@ntua 2019-2020

TLB Prefetching

• All prefetched TLB entries are allocated in a prefetch buffer

• Avoid pollution in the TLB

42cslab@ntua 2019-2020

TLB Prefetching

• Cache-line prefetching

• Cache lines can usually hold multiple page table entries.

• For example, x86-64 architectures use 8-byte page table entries.

• A cache lines of 64-128-bytes can hold 8-16 page table entries for
consecutive virtual pages.

• Sequential prefetching

• the prefetch target is the page table entry of the virtual page that is +/-1
away from the virtual page number of the current access, whether it is a
TLB hit or miss

43cslab@ntua 2019-2020

TLB Prefetching

• Arbitrary-stride prefetching

• Prefetch target is +/-N away from the virtual page number of the current
access

• Dynamically identify the stride N

44cslab@ntua 2019-2020

TLB Prefetching

• Markov prefetching

• More complex temporal patterns exist instead. In such cases, one may
expect certain chains of virtual pages to be accessed in order, with no
fixed stride between successive virtual pages

• A hardware table that represents a Markov state transition diagram, with
states denoting the referenced virtual page, and transition arcs denoting
the probability with which the next page table entry is accessed

45cslab@ntua 2019-2020

TLB Prefetching

• Recency-based prefetching

• Targeted particularly at TLBs

• Virtual pages that were referenced close together in time in the past will
be referenced close together in time in the future

• Requires modifications in the page table organization

46cslab@ntua 2019-2020

TLB Prefetching

• Distance prefetching

• Get the best of all these worlds

• Identify most of the patterns that Markov and recency-based prefetching
discover (and maybe other extra patterns) without the storage
overheads, while also capturing stride patterns

• Keeps track of differences (or ”distances”) between successive virtual
page numbers

• For instance, consider a memory access stream to virtual pages 1, 2,
4, 5, 7, and 8.

• Distance-based prefetching uses hardware that can track the fact that
if a distance of 1 is followed by a predicted distance of 2, then we
need only a two-entry table for this predictor to capture the entire
stream of virtual pages.

47cslab@ntua 2019-2020

TLB Prefetching

• Distance prefetching

48cslab@ntua 2019-2020

Other Translation Techniques & Optimizations

• TLB speculation

• Virtualization

• Energy-efficient address translation

• Translation coherence

• Accelerators

• Memory protection

• Shared address translation structures

• Software optimizations

