
Προηγμένη Αρχιτεκτονική Υπολογιστών

Non-Uniform Cache Architectures

Νεκτάριος Κοζύρης & Διονύσης Πνευματικάτος

{nkoziris,pnevmati}@cslab.ece.ntua.gr

Διαφάνειες από τον Ανδρέα Μόσχοβο, University of Toronto

8ο εξάμηνο ΣΗΜΜΥ ⎯ Ακαδημαϊκό Έτος: 2019-20

http://www.cslab.ece.ntua.gr/courses/advcomparch/

• Sun Niagara T1

From http://jinsatoh.jp/ennui/archives/2006/03/opensparc.html

Modern Processors Have Lots of Cores and Large Caches

• Intel i7 (Nehalem)

From http://www.legitreviews.com/article/824/1/

Modern Processors Have Lots of Cores and Large Caches

From http://www.chiparchitect.com

Modern Processors Have Lots of Cores and Large Caches

• AMD Shanghai

From http://www.theinquirer.net/inquirer/news/1018130/ibms-power5-the-multi-chipped-monster-mcm-revealed

Modern Processors Have Lots of Cores and Large Caches

• IBM Power 5

Why?

• Helps with Performance and Energy

• Find graph with perfect vs. realistic memory system

What Cache Design Used to be About

• L2: Worst Latency == Best Latency

• Key Decision: What to keep in each cache level

Core

L1I L1D

L2

Main Memory

1-3 cycles / Latency Limited

10-16 cycles / Capacity Limited

> 200 cycles

What Has Changed

ISSCC 2003

What Has Changed

• Where something is
matters

• More time for
longer distances

NUCA: Non-Uniform Cache Architecture

• Tiled Cache

• Variable Latency

• Closer tiles = Faster

• Key Decisions:

– Not only what to cache

– Also where to cache

Core

L1I L1D

L2 L2

L2 L2

L2 L2

L2 L2

L2 L2

L2 L2

L2 L2

L2 L2

NUCA Overview

• Initial Research focused on Uniprocessors

• Data Migration Policies

– When to move data among tiles

• L-NUCA: Fine-Grained NUCA

Another Development: Chip Multiprocessors

• Easily utilize on-chip transistors

• Naturally exploit thread-level parallelism

• Dramatically reduce design complexity

• Future CMPs will have more processor cores

• Future CMPs will have more cache

Core

L1I L1D

L2

Core

L1I L1D

Core

L1I L1D

Core

L1I L1D

Text from Michael Zhang & Krste Asanovic, MIT

Initial Chip Multiprocessor Designs

core

L1$

• Layout: “Dance-Hall”

– Core + L1 cache

– L2 cache

• Small L1 cache: Very low access
latency

• Large L2 cache

Intra-Chip Switch

core

L1$

core

L1$

core

L1$

L2

Cache

A 4-node CMP with a

large L2 cache

Slide from Michael Zhang & Krste Asanovic, MIT

Chip Multiprocessor w/ Large Caches

core

L1$

• Layout: “Dance-Hall”

– Core + L1 cache

– L2 cache

• Small L1 cache: Very low access
latency

• Large L2 cache: Divided into slices to
minimize access latency and power
usage

Intra-Chip Switch

core

L1$

core

L1$

core

L1$

A 4-node CMP with a

large L2 cache

L2 Slice

L2 Slice

L2 Slice

L2 Slice L2 Slice L2 Slice

L2 Slice L2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

Slide from Michael Zhang & Krste Asanovic, MIT

Chip Multiprocessors + NUCA

L2 Slice

core

L1$

L2 Slice

L2 Slice

L2 Slice L2 Slice L2 Slice

• Current: Caches are designed with (long)
uniform access latency for the worst case:

Best Latency == Worst Latency

• Future: Must design with non-uniform access
latencies depending on the on-die location of
the data:

Best Latency << Worst Latency

• Challenge: How to minimize average cache
access latency:

Average Latency Best Latency

L2 Slice L2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

Intra-Chip Switch

core

L1$

core

L1$

core

L1$

A 4-node CMP with a

large L2 cache

Slide from Michael Zhang & Krste Asanovic, MIT

Tiled Chip Multiprocessors

 Tiled CMPs for Scalability
 Minimal redesign effort

 Use directory-based protocol for scalability

 Managing the L2s to minimize the

effective access latency
 Keep data close to the requestors

 Keep data on-chip
SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

SWc L1

L2$

Data

L2$

Tag

core L1$

L2$

Slice

Data

Switch

L2$

Slice

Tag

Slide from Michael Zhang & Krste Asanovic, MIT

Option #1: Private Caches

• + Low Latency

• - Fixed allocation

Core

L1I L1D

L2

Core

L1I L1D

Core

L1I L1D

Core

L1I L1D

L2 L2 L2

Main Memory

Option #2: Shared Caches

• Higher, variable latency

• One Core can use all of the cache

Core

L1I L1D

L2

Core

L1I L1D

Core

L1I L1D

Core

L1I L1D

L2 L2 L2

Main Memory

Data Cache Management for CMP Caches

• Get the best of both worlds

– Low Latency of Private Caches

– Capacity Adaptability of Shared Caches

NUCA: A Non-Uniform Cache Access Architecture

for Wire-Delay Dominated On-Chip Caches

Changkyu Kim, D.C. Burger, and S.W. Keckler,

10th International Conference on Architectural
Support for Programming Languages and

Operating Systems (ASPLOS-X), October, 2002.

Some material from slides by Prof. Hsien-Hsin S. Lee ECE, GTech

Conventional – Monolithic Cache

• UCA: Uniform Access Cache

UCA

• Best Latency = Worst Latency

• Time to access the farthest possible bank

UCA Design

• Partitioned in Banks

• Conceptually a single address and a single data bus

• Pipelining can increase throughput

• See CACTI tool:

• http://www.hpl.hp.com/research/cacti/

• http://quid.hpl.hp.com:9081/cacti/

Tag

Array

Data

Bus

Address

Bus

Bank

Sub-bank

Predecoder

Sense

amplifier

Wordline driver

and decoder

http://www.hpl.hp.com/research/cacti/

Experimental Methodology

• SPEC CPU 2000

• Sim-Alpha

• CACTI

• 8 FO4 cycle time

• 132 cycles to main memory

• Skip and execute a sample

• Technology Nodes

– 130nm, 100nm, 70nm, 50nm

UCA Scaling – 130nm to 50nm

0

0,05

0,1

0,15

0,2

0,25

130nm/2MB 100nm/4MB 70nm/8MB 50nm/16MB

Miss Rate

0

5

10

15

20

25

30

35

40

45

130nm/2MB 100nm/4MB 70nm/8MB 50nm/16MB

C
yc

le
s

Unloaded Latency

0

50

100

150

200

250

300

130nm/2MB 100nm/4MB 70nm/8MB 50nm/16MB

Loaded Latency

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

130nm/2MB 100nm/4MB 70nm/8MB 50nm/16MB

IPC

Relative Latency and Performance Degrade as Technology Improves

UCA Discussion

• Loaded Latency: Contention

– Bank

– Channel
• Bank may be free but path to it is not

Multi-Level Cache

• Conventional Hierarchy

L3

• Common Usage:

• Serial-Access for Energy and Bandwidth Reduction

• This paper:

• Parallel Access

• Prove that even then their design is better

L2

ML-UCA Evaluation

• Better than UCA

• Performance Saturates
at 70nm

• No benefit from larger
cache at 50nm

• Aggressively banked

• Multiple parallel
accesses

0

5

10

15

20

25

30

35

40

45

130nm/512K/2MB 100nm/512K/4M 70nm/1M/8M 50nm/1M/16M

Latency

Unloaded L2 Unloaded L3

0,5

0,52

0,54

0,56

0,58

0,6

0,62

0,64

0,66

130nm/512K/2MB 100nm/512K/4M 70nm/1M/8M 50nm/1M/16M

IPC

S-NUCA-1

• Static NUCA with per bank set busses

Data

Bus

Address

Bus

Bank

Sub-bank

• Use private per bank set channel
• Each bank has its distinct access latency
• A given address maps to a given bank set

• Lower bits of block address

Tag Set Offset

Bank Set

S-NUCA-1

• How fast can we initiate requests?

– If c = scheduler delay

• Conservative /Realistic:

– Bank + 2 x interconnect + c

• Aggressive / Unrealistic:

– Bank + c

• What is the optimal number of bank sets?

– Exhaustive evaluation of all options

– Which gives the highest IPC

Data

Bus

Address

Bus

Bank

S-NUCA-1 Latency Variability

• Variability increases for finer technologies

• Number of banks does not increase beyond 4M

– Overhead of additional channels

– Banks become larger and slower

0

5

10

15

20

25

30

35

40

45

130nm/2M/16 100nm/4M/32 70nm/8M/32 50nm/16M/32

Unloaded min S2

Unloaded avg S2

Unloaded max S2

S-NUCA-1 Loaded Latency

• Better than ML-UCA

0

5

10

15

20

25

30

35

130nm/2M/16 100nm/4M/32 70nm/8M/32 50nm/16M/32

Aggr. Loaded

S-NUCA-1: IPC Performance

• Per bank channels become an overhead

• Prevent finer partitioning @70nm or smaller

0,5

0,52

0,54

0,56

0,58

0,6

0,62

0,64

130nm/2M/16 100nm/4M/32 70nm/8M/32 50nm/16M/32

IPC S1

S-NUCA2

• Use a 2-D Mesh P2P interconnect

Bank

Data
bus

Switch

Tag Array

Wordline driver

and decoder

Predecoder

• Wire overhead much lower:

• S1: 20.9% vs. S2: 5.9% at 50nm and 32banks

• Reduces contention

• 128-bit bi-directional links

S-NUCA2 vs. S-NUCA1 Unloaded Latency

• S-NUCA2 almost always better

0

5

10

15

20

25

30

35

40

45

130nm/2M/16 100nm/4M/32 70nm/8M/32 50nm/16M/32

Unloaded min S1

Unloaded min S2

Unloaded avg S1

Unloaded avg S2

Unloaded max S1

Unloaded max S2

Hmm

S-NUCA2 vs. S-NUCA-1 IPC Performance

• S2 better than S1

0,48

0,5

0,52

0,54

0,56

0,58

0,6

0,62

0,64

0,66

130nm/2M/16 100nm/4M/32 70nm/8M/32 50nm/16M/32

IPC S1

IPC S2

Aggressive scheduling for S-NUCA1
Channel fully pipelined

36

Dynamic NUCA

• Data can dynamically migrate

• Move frequently used cache lines closer to CPU

One way of each set in fast d-group; compete within set

Cache blocks “screened” for fast placement

datatag way 0

way 1

way n-2

way n-1

fast

slow

.

...

d-group

Processor Core

Part of slide from Zeshan Chishti, Michael D Powell, and T. N. Vijaykumar

37

Dynamic NUCA – Mapping #1

• Simple Mapping

• All 4 ways of each bank set need to be searched

• Farther bank sets longer access

8 bank sets
way 0

way 1

way 2

way 3

one set

bank

• Where can a block map to?

38

Dynamic NUCA – Mapping #2

• Fair Mapping

• Average access times across all bank sets are equal

8 bank sets
way 0

way 1

way 2

way 3

one set

bank

39

Dynamic NUCA – Mapping #3

• Shared Mapping

• Sharing the closest banks every set has some fast storage

• If n bank sets share a bank then all banks must be n-way set
associative

8 bank sets
way 0

way 1

way 2

way 3

bank

Dynamic NUCA - Searching

• Where is a block?

• Incremental Search

– Search in order

• Multicast

– Search all of them in parallel

• Partitioned Multicast

– Search groups of them in parallel

way 0

way 1

way 2

way 3

D-NUCA – Smart Search

• Tags are distributed

– May search many banks before finding a block

– Farthest bank determines miss determination latency

• Solution: Centralized Partial Tags

– Keep a few bits of all tags (e.g., 6) at the cache controller

– If no match Bank doesn’t have the block

– If match Must access the bank to find out

Partial Tags R.E. Kessler, R. Jooss, A. Lebeck, and M.D. Hill. Inexpensive

implementations of set-associativity. In Proceedings of

the 16th Annual International Symposium on Computer Architecture,

pages 131–139, May 1989.

Partial Tags / Smart Search Policies

• SS-Performance:

– Partial Tags and Banks accessed in parallel

– Early Miss Determination

– Go to main memory if no match

– Reduces latency for misses

• SS-Energy:

– Partial Tags first

– Banks only on potential match

– Saves energy

– Increases Delay

Migration

• Want data that will be accessed to be close

• Use LRU?

– Bad idea: must shift all others

MRU

LRU

• Generational Promotion

• Move to next bank

• Swap with another block

Initial Placement

• Where to place a new block coming from memory?

• Closest Bank?

– May force another important block to move away

• Farthest Bank?

– Takes several accesses before block comes close

Victim Handling

• A new block must replace an older block victim

• What happens to the victim?

• Zero Copy

– Get’s dropped completely

• One Copy

– Moved away to a slower bank (next bank)

DN-Best

• DN-BEST

– Shared Mapping

– SS Energy
• Balance performance and access account/energy

• Maximum performance is 3% higher

– Insert at tail
• Insert at head reduces avg. latency but increases misses

– Promote on hit
• No major differences with other polices

Baseline D-NUCA

• Simple Mapping

• Multicast Search

• One-Bank Promotion on Hit

• Replace from the slowest bank

8 bank sets
way 0

way 1

way 2

way 3

one set

bank

D-NUCA Unloaded Latency

0

5

10

15

20

25

30

35

40

45

50

130nm/2M/4x4 100nm/4MB/8x4 70nm/8MB/16x8 50nm/16M/16x16

Unloaded min

Unloaded avg

Unloaded Max

IPC Performance: DNUCA vs. S-NUCA2 vs. ML-UCA

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4

IPC DNUCA

IPC S2

IPC ML

Performance Comparison

• D-NUCA and S-NUCA2 scale well

• D-NUCA outperforms all other designs

• ML-UCA saturates – UCA Degrades

UPPER = all hits are

in the closest bank

3 cycle latency

Distance Associativity for High-
Performance Non-Uniform Cache

Architectures
Zeshan Chishti, Michael D Powell, and T.

N. Vijaykumar

36th Annual International Symposium on
Microarchitecture (MICRO), December

2003.

Slides mostly directly from the authors’ conference presentation

Motivation

Large Cache Design
• L2/L3 growing (e.g., 3 MB in Itanium II)
• Wire-delay becoming dominant in access time

Conventional large-cache
• Many subarrays => wide range of access times
• Uniform cache access => access-time of slowest

subarray
• Oblivious to access-frequency of data

Want often-accessed data faster: improve access time

Previous work: NUCA (ASPLOS ’02)

Pioneered Non-Uniform Cache Architecture

Access time: Divides cache into many distance-groups

• D-group closer to core => faster access time

Data Mapping: conventional

• Set determined by block index; each set has n-ways

Within a set, place frequently-accessed data in fast d-
group

• Place blocks in farthest way; bubble closer if needed

D-NUCA

One way of each set in fast d-group; compete within set

Cache blocks “screened” for fast placement

datatag way 0

way 1

way n-2

way n-1

fast

slow

.

...

Processor core

d-group

D-NUCA

One way of each set in fast d-group; compete within set

Cache blocks “screened” for fast placement

datatag way 0

way 1

way n-2

way n-1

fast

slow

.

...

Processor core

d-group

D-NUCA

datatag way 0

way 1

way n-2

way n-1

fast

slow

.

...

Processor core

d-group

One way of each set in fast d-group; compete within set

Cache blocks “screened” for fast placement

D-NUCA

datatag way 0

way 1

way n-2

way n-1

fast

slow

.

...

Processor core

d-group

One way of each set in fast d-group; compete within set

Cache blocks “screened” for fast placement

D-NUCA

Processor core

d-group

tag way 0

way 1

way n-2

way n-1

fast

slow

.

...

One way of each set in fast d-group; compete within set

Cache blocks “screened” for fast placement

D-NUCA

Want to change restriction; more flexible data-
placement

datatag way 0

way 1

way n-2

way n-1

fast

slow

.

...

Processor core

d-group

NUCA

Artificial coupling between s-a way # and d-group
• Only one way in each set can be in fastest d-group

– Hot sets have > 1 frequently-accessed way
– Hot sets can place only one way in fastest d-group

Swapping of blocks is bandwidth- and energy-hungry
• D-NUCA uses a switched network for fast swaps

Common Large-cache Techniques

Sequential Tag-Data: e.g., Alpha 21164 L2, Itanium II L3

• Access tag first, and then access only matching data

• Saves energy compared to parallel access

Data Layout: Itanium II L3

• Spread a block over many subarrays (e.g., 135 in
Itanium II)

• For area efficiency and hard- and soft-error tolerance

These issues are important for large caches

Contributions

Key observation:
• sequential tag-data => indirection through tag array
• Data may be located anywhere

Distance Associativity:
Decouple tag and data => flexible mapping for sets
Any # of ways of a hot set can be in fastest d-group

NuRAPID cache: Non-uniform access with Replacement And
Placement usIng Distance associativity

Benefits:
More accesses to faster d-groups
Fewer swaps => less energy, less bandwidth
But:
More tags + pointers are needed

Outline

• Overview

• NuRAPID Mapping and Placement

• NuRAPID Replacement

• NuRAPID layout

• Results

• Conclusion

NuRAPID Mapping and Placement

Distance-Associative Mapping:
• decouple tag from data using forward pointer
• Tag access returns forward pointer, data location

Placement: data block can be placed anywhere
• Initially place all data in fastest d-group
• Small risk of displacing often-accessed block

NuRAPID Mapping; Placing a block
fa

s
t

s
lo

w

d
-g

ro
u
p
 0

d
-g

ro
u
p
 1

d
-g

ro
u
p
 2

Data ArraysTag array

...

Way-0 Way-(n-1)

frame #

0

1

k

0

1

k

0

1

k

set #

0

1

2

3

Atag,grp0,frm1

A

forward pointer

All blocks initially placed in

fastest d-group

NuRAPID: Hot set can be in fast d-group
fa

s
t

s
lo

w

d
-g

ro
u
p
 0

d
-g

ro
u
p
 1

d
-g

ro
u
p
 2

Data ArraysTag array

...

Way-0 Way-(n-1)

frame #

0

1

k

0

1

k

0

1

k

set #

0

1

2

3

Atag,grp0,frm1

A

Btag,grp0,frmk

B

Multiple blocks from one set in

same d-group

NuRAPID: Unrestricted placement
fa

s
t

s
lo

w

d
-g

ro
u
p
 0

d
-g

ro
u
p
 1

d
-g

ro
u
p
 2

Data ArraysTag array

...

Way-0 Way-(n-1)

frame #

0

1

k

0

1

k

0

1

k

set #

0

1

2

3

Atag,grp0,frm1

A

Btag,grp0,frmk

Ctag,grp2,frm0 Dtag,grp1,frm1

B

C

D

No coupling between tag and

data mapping

Outline

• Overview

• NuRAPID Mapping and Placement

• NuRAPID Replacement

• NuRAPID layout

• Results

• Conclusion

NuRAPID Replacement

Two forms of replacement:

• Data Replacement: Like conventional
– Evicts blocks from cache due to tag-array limits

• Distance Replacement: Moving blocks among d-groups
– Determines which block to demote from a d-group
– Decoupled from data replacement
– No blocks evicted

• Blocks are swapped

NuRAPID: Replacement
fa

s
t

s
lo

w

d
-g

ro
u
p
 0

d
-g

ro
u
p
 1

d
-g

ro
u
p
 2

Data ArraysTag array

...

Way-0 Way-(n-1)

frame #

0

1

k

0

1

k

0

1

k

set #

0

1
Btag,grp0,frm1

B

Ztag,grp1,frmk

ZPlace new block, A, in set 0.

Space must be created in

the tag set:

Data-Replace Z

Z may not be in the target d-group

NuRAPID: Replacement
fa

s
t

s
lo

w

d
-g

ro
u
p
 0

d
-g

ro
u
p
 1

d
-g

ro
u
p
 2

Data ArraysTag array

...

Way-0 Way-(n-1)

frame #

0

1

k

0

1

k

0

1

k

set #

0

1
Btag,grp0,frm1

B

empty

emptyPlace new block, A, in set 0.

Data-Replace Z

NuRAPID: Replacement
fa

s
t

s
lo

w

d
-g

ro
u
p
 0

d
-g

ro
u
p
 1

d
-g

ro
u
p
 2

Data ArraysTag array

...

Way-0 Way-(n-1)

frame #

0

1

k

0

1

k

0

1

k

set #

0

1
Btag,grp0,frm1

B, set1 way0

Atag

emptyPlace Atag, in set 0.

Must create an empty data

block

B is selected to demote. Use

reverse-pointer to locate Btag

reverse pointer

NuRAPID: Replacement
fa

s
t

s
lo

w

d
-g

ro
u
p
 0

d
-g

ro
u
p
 1

d
-g

ro
u
p
 2

Data ArraysTag array

...

Way-0 Way-(n-1)

frame #

0

1

k

0

1

k

0

1

k

set #

0

1
Btag,grp1,frmk

empty

Atag

B, set1 way0B is demoted to empty frame.

Btag updated

There was an empty frame

because Z was evicted

This may not always be the

case

NuRAPID: Replacement
fa

s
t

s
lo

w

d
-g

ro
u
p
 0

d
-g

ro
u
p
 1

d
-g

ro
u
p
 2

Data ArraysTag array

...

Way-0 Way-(n-1)

frame #

0

1

k

0

1

k

0

1

k

set #

0

1
Btag,grp1,frmk

A, set0 wayn-1

Atag,grp0,frm1

B, set1 way0A is placed in d-group 0

pointers updated

Replacement details

Always empty block for demotion for dist.-replacement
• May require multiple demotions to find it

Example showed only demotion
• Block could get stuck in slow d-group
• Solution: Promote upon access (see paper)

How to choose block for demotion?
• Ideal: LRU-group
• LRU hard. We show random OK (see paper)

– Promotions fix errors made by random

Outline

• Overview

• NuRAPID Mapping and Placement

• NuRAPID Replacement

• NuRAPID layout

• Results

• Conclusion

Layout: small vs. large d-groups

Key: Conventional caches spread block over subarrays

+ Splits the “decoding” into the address decoder and muxes at the output
of the subarrays

e.g., 5-to-1 decoder + 2 2-to-1 muxes better than 10-to-1 decoder

?? 9-to-1 decoder ??

+ more flexibility to deal with defects

+ more tolerant to transient errors

• Non-uniform cache: can spread over only one d-group
– So all bits in a block have same access time

Small d-groups (e.g., 64KB of 4 16-KB subarrays)

• Fine granularity of access times

• Blocks spread over few subarrays

Large d-groups (e.g., 2 MB of 128 16-KB subarrays)

• Coarse granularity of access times

• Blocks spread over many subarrays
Large d-groups superior for spreading data

Outline

• Overview

• NuRAPID Mapping and Placement

• NuRAPID Replacement

• NuRAPID layout

• Results

• Conclusion

Methodology

• 64 KB, 2-way L1s. 8 MSHRs on d-cache

NuRAPID: 8 MB, 8-way, 1-port, no banking

• 4 d-groups (14-, 18-, 36-, 44- cycles)

• 8 d-groups (12-, 19-, 20-, . . . 49- cycles) shown in paper

Compare to:

• BASE:

– 1 MB, 8-way L2 (11-cycles) + 8-MB, 8-way L3 (43-cycles)

• 8 MB, 16-way D-NUCA (4 – 31 cycles)

– Multi-banked, infinite-bandwidth interconnect

Results

• SA vs. DA placement (paper figure 4)

As high

As possible

Results

3.0% better than D-NUCA and up to 15% better

Results

Energy effects are much more significant

Conclusions

• NuRAPID

– leverage seq. tag-data

– flexible placement, replacement for non-uniform cache

– Achieves 7% overall processor E-D savings

over conventional cache, D-NUCA

– Reduces L2 energy by 77% over D-NUCA

NuRAPID an important design for wire-delay dominated
caches

Managing Wire Delay in Large CMP
Caches

Bradford M. Beckmann and David A. Wood

Multifacet Project
University of Wisconsin-Madison

MICRO 2004

Be

ck

m

an

n

&

W

oo

d

85

Overview

• Managing wire delay in shared CMP caches
• Three techniques extended to CMPs

1. On-chip Strided Prefetching (not in talk – see paper)
– Scientific workloads: 10% average reduction
– Commercial workloads: 3% average reduction

2. Cache Block Migration (e.g. D-NUCA)
– Block sharing limits average reduction to 3%
– Dependence on difficult to implement smart search

3. On-chip Transmission Lines (e.g. TLC)
– Reduce runtime by 8% on average
– Bandwidth contention accounts for 26% of L2 hit latency

• Combining techniques
+ Potentially alleviates isolated deficiencies

– Up to 19% reduction vs. baseline

– Implementation complexity

Baseline: CMP-SNUCA 86

L1

I $

L1

D $

CPU 2

L1

I $

L1

D $

CPU 3

L1

D $

L1

I $

CPU 7

L1

D $

L1

I $

CPU 6

L
1

D
 $

L
1

I
$

C
P

U
 1

L
1

D
 $

L
1

I
$

C
P

U
 0

L
1

I
$

L
1

D
 $

C
P

U
 4

L
1

I
$

L
1

D
 $

C
P

U
 5

Outline

• Global interconnect and CMP trends

• Latency Management Techniques

• Evaluation

– Methodology

– Block Migration: CMP-DNUCA

– Transmission Lines: CMP-TLC

– Combination: CMP-Hybrid

87

Managing Wire Delay in Large CMP Caches

88

Block Migration: CMP-DNUCA

L1

I $

L1

D $

CPU 2

L1

I $

L1

D $

CPU 3

L1

D $

L1

I $

CPU 7

L1

D $

L1

I $

CPU 6

L
1

D
 $

L
1

I
$

C
P

U
 1

L
1

D
 $

L
1

I
$

C
P

U
 0

L
1

I
$

L
1

D
 $

C
P

U
 4

L
1

I
$

L
1

D
 $

C
P

U
 5

B

A

A

B

89

On-chip Transmission Lines

• Similar to contemporary off-chip communication

• Provides a different latency / bandwidth tradeoff

• Wires behave more “transmission-line” like as
frequency increases

– Utilize transmission line qualities to our advantage

– No repeaters – route directly over large structures

– ~10x lower latency across long distances

• Limitations

– Requires thick wires and dielectric spacing

– Increases manufacturing cost

• See “TLC: Transmission Line Caches” Beckman,
Wood, MICRO’03

Be

ck

m

an

n

&

W

oo

d

MICRO ’03 - TLC: Transmission Line

Caches

90

RC vs. TL Communication

Conventional Global RC Wire

On-chip Transmission Line

Voltage Voltage

Distance
Vt

Driver Receiver

Voltage Voltage

Distance
Vt

Driver Receiver

Be

ck

m

an

n

&

W

oo

d

MICRO ’03 - TLC: Transmission Line

Caches

91

RC Wire vs. TL Design

RC delay dominated

ReceiverDriver

On-chip Transmission Line

Conventional Global RC Wire

LC delay dominated

~0.375 mm

~10 mm

Be

ck

m

an

n

&

W

oo

d

MICRO ’03 - TLC: Transmission Line

Caches

92

On-chip Transmission Lines

• Why now? → 2010 technology

– Relative RC delay ↑

– Improve latency by 10x or more

• What are their limitations?

– Require thick wires and dielectric spacing

– Increase wafer cost

Presents a different Latency/Bandwidth Tradeoff

Link Latency

0

10

20

30

40

50

0.5 1 1.5 2 2.5 3

Length (cm)

L
a
te

n
c
y
 (

c
y
c
le

s
)

Repeated RC

Single TL

Beckmann & Wood

MICRO ’03 - TLC: Transmission Line

Caches

93

Link Latency

0

10

20

30

40

50

0.5 1 1.5 2 2.5 3

Length (cm)

L
a
te

n
c
y
 (

c
y
c
le

s
)

Repeated RC

Single TL

Latency Comparison

Be

ck

m

an

n

&

W

oo

d

MICRO ’03 - TLC: Transmission Line

Caches

94

Bandwidth Comparison

2 transmission line signals

50 conventional signals

Key observation

• Transmission lines – route over large structures

• Conventional wires – substrate area & vias for repeaters

95

Transmission Lines: CMP-TLC

CPU 3

L1

I $

L1

D $

L1

I $

L1

D $

L1

I $

L1

D $

L1

I $

L1

D $

L1

I $

L1

D $

L1

I $

L1

D $

L1

I $

L1

D $

L1

I $

L1

D $

CPU 2

CPU 1

CPU 0

CPU 4

CPU 5

CPU 6

CPU 7

16

8-byte

links

96

Combination: CMP-Hybrid

L1

I $

L1

D $

CPU 2

L1

I $

L1

D $

CPU 3

L1

D $

L1

I $

CPU 7

L1

D $

L1

I $

CPU 6

L
1

D
 $

L
1

I
$

C
P

U
 1

L
1

D
 $

L
1

I
$

C
P

U
 0

L
1

I
$

L
1

D
 $

C
P

U
 4

L
1

I
$

L
1

D
 $

C
P

U
 5

8

32-byte

links

Be

ck

m

an

n

&

W

oo

d

Managing Wire Delay in Large CMP Caches 97

Outline

• Global interconnect and CMP trends

• Latency Management Techniques

• Evaluation

– Methodology

– Block Migration: CMP-DNUCA

– Transmission Lines: CMP-TLC

– Combination: CMP-Hybrid

Be

ck

m

an

n

&

W

oo

d

Managing Wire Delay in Large CMP Caches 98

Methodology

• Full system simulation
– Simics

– Timing model extensions
• Out-of-order processor

• Memory system

• Workloads
– Commercial

• apache, jbb, otlp, zeus

– Scientific
• Splash: barnes & ocean

• SpecOMP: apsi & fma3d

Beckmann &

Wood

Managing Wire Delay in Large CMP Caches 99

System Parameters

Memory System Dynamically Scheduled Processor

L1 I & D caches 64 KB, 2-way, 3 cycles Clock frequency 10 GHz

Unified L2 cache 16 MB, 256x64 KB, 16-

way, 6 cycle bank access

Reorder buffer /

scheduler

128 / 64 entries

L1 / L2 cache block

size

64 Bytes Pipeline width 4-wide fetch & issue

Memory latency 260 cycles Pipeline stages 30

Memory bandwidth 320 GB/s Direct branch predictor 3.5 KB YAGS

Memory size 4 GB of DRAM Return address stack 64 entries

Outstanding memory

request / CPU

16 Indirect branch predictor 256 entries

(cascaded)

Be

ck

m

an

n

&

W

oo

d

Managing Wire Delay in Large CMP Caches 100

Outline

• Global interconnect and CMP trends

• Latency Management Techniques

• Evaluation

– Methodology

– Block Migration: CMP-DNUCA

– Transmission Lines: CMP-TLC

– Combination: CMP-Hybrid

101

CMP-DNUCA: Organization

Bankclusters

Local

Inter.

Center

CPU 2 CPU 3

CPU 7 CPU 6

C
P

U
 1

C
P

U
 0

C
P

U
 4

C
P

U
 5

Managing Wire Delay in Large CMP Caches 102

Hit Distribution: Grayscale Shading

CPU 2 CPU 3

CPU 7 CPU 6

C
P

U
 1

C
P

U
 0

C
P

U
 4

C
P

U
 5

Greater %

of L2 Hits

Be

ck

m

an

n

&

W

oo

d

Managing Wire Delay in Large CMP Caches 103

CMP-DNUCA: Migration

• Migration policy

– Gradual movement

– Increases local hits and reduces distant hits

other

bankclusters

my center

bankcluster
my inter.

bankcluster

my local

bankcluster

Managing Wire Delay in Large CMP Caches 104

CMP-DNUCA: Hit Distribution Ocean per CPU

CPU 0 CPU 1 CPU 2 CPU 3

CPU 4 CPU 5 CPU 6 CPU 7

Be

ck

m

an

n

&

W

oo

d

105

CMP-DNUCA: Hit Distribution Ocean all CPUs

Block migration successfully separates the data sets

Be

ck

m

an

n

&

W

oo

d

106

CMP-DNUCA: Hit Distribution OLTP all CPUs

Be

ck

m

an

n

&

W

oo

d

107

CMP-DNUCA: Hit Distribution OLTP per CPU

Hit Clustering: Most L2 hits satisfied by the center banks

CPU 0 CPU 1 CPU 2 CPU 3

CPU 4 CPU 5 CPU 6 CPU 7

Be

ck

m

an

n

&

W

oo

d

Managing Wire Delay in Large CMP Caches 108

CMP-DNUCA: Search

• Search policy

– Uniprocessor DNUCA solution: partial tags
• Quick summary of the L2 tag state at the CPU

• No known practical implementation for CMPs

– Size impact of multiple partial tags

– Coherence between block migrations and partial tag state

– CMP-DNUCA solution: two-phase search
• 1st phase: CPU’s local, inter., & 4 center banks

• 2nd phase: remaining 10 banks

• Slow 2nd phase hits and L2 misses

0

5

10

15

20

25

30

35

40

45

50

jbb oltp ocean apsi

Benchmarks

C
y
c
le

s

CMP-SNUCA

CMP-DNUCA

perfect CMP-

DNUCA

Be

ck

m

an

n

&

W

oo

d

Managing Wire Delay in Large CMP Caches 109

0

5

10

15

20

25

30

35

40

45

50

jbb oltp ocean apsi

Benchmarks

C
y
c
le

s

CMP-SNUCA

CMP-DNUCA

perfect CMP-

DNUCA

CMP-DNUCA: L2 Hit Latency

Be

ck

m

an

n

&

W

oo

d

Managing Wire Delay in Large CMP Caches 110

CMP-DNUCA Summary
• Limited success

– Ocean successfully splits
• Regular scientific workload – little sharing

– OLTP congregates in the center
• Commercial workload – significant sharing

• Smart search mechanism
– Necessary for performance improvement

– No known implementations

– Upper bound – perfect search

Be

ck

m

an

n

&

W

oo

d

Managing Wire Delay in Large CMP Caches 111

Outline

• Global interconnect and CMP trends

• Latency Management Techniques

• Evaluation

– Methodology

– Block Migration: CMP-DNUCA

– Transmission Lines: CMP-TLC

– Combination: CMP-Hybrid

Be

ck

m

an

n

&

W

oo

d

Managing Wire Delay in Large CMP Caches 112

L2 Hit Latency

Bars Labeled

D: CMP-DNUCA

T: CMP-TLC

H: CMP-Hybrid

Be

ck

m

an

n

&

W

oo

d

Managing Wire Delay in Large CMP Caches 113

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

jbb oltp ocean apsi

Benchmarks

N
o

rm
a
li

z
e
d

 R
u

n
ti

m
e

CMP-SNUCA

perfect CMP-DNUCA

CMP-TLC

perfect CMP-Hybrid

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

jbb oltp ocean apsi

Benchmarks

N
o

rm
a
li

z
e
d

 R
u

n
ti

m
e

CMP-SNUCA

perfect CMP-DNUCA

CMP-TLC

perfect CMP-Hybrid

Overall Performance

Transmission lines improve L2 hit and L2 miss latency

Be

ck

m

an

n

&

W

oo

d

Managing Wire Delay in Large CMP Caches 114

Conclusions

• Individual Latency Management Techniques

– Strided Prefetching: subset of misses

– Cache Block Migration: sharing impedes migration

– On-chip Transmission Lines: limited bandwidth

• Combination: CMP-Hybrid

– Potentially alleviates bottlenecks

– Disadvantages
• Relies on smart-search mechanism

• Manufacturing cost of transmission lines

Recap

• Initial NUCA designs Uniprocessors

– NUCA:
• Centralized Partial Tag Array

– NuRAPID:
• Decouples Tag and Data Placement

• More overhead

– L-NUCA
• Fine-Grain NUCA close to the core

– Beckman & Wood:
• Move Data Close to User

• Two-Phase Multicast Search

• Gradual Migration

• Scientific: Data mostly “private” move close / fast

• Commercial: Data mostly “shared” moves in the center / “slow”

Recap – NUCAs for CMPs

• Beckman & Wood:

– Move Data Close to User

– Two-Phase Multicast Search

– Gradual Migration

– Scientific: Data mostly “private” move close / fast

– Commercial: Data mostly “shared” moves in the center /
“slow”

• CMP-NuRapid:

– Per core, L2 tag array
• Area overhead

• Tag coherence

